Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(S=2+4+6+...+2n=6972\)
\(\Rightarrow\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)
\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)
\(\Rightarrow n\left(n+1\right)=6972\)
\(\Rightarrow n^2+n-6972=0\)
\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)
\(\Rightarrow n=83\)
#~Will~be~Pens~#
Ghi ra đi đâu phải ai cũng có sách như bn đâu
Với lại 1 số đề về chủ đề gì????????
\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\Rightarrow P=\dfrac{1}{2}\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)Mà \(ab+bc+ac=0\Rightarrow a^2+b^2+c^2=0\Rightarrow a=b=c=0\)
Vậy \(M=-2005^{2006}\)
Gọi chữ số hàng chục của số tự nhiên có 2 chữ số cần tìm là x
đk: x \(\in N\)* , x\(\le\)8
Chữ số hàng đơn vị của số tự nhiên cần tìm là 8-x
Vì nếu lấy chữ số hàng chục cộng 4 thì được 1 số gấp 3 lần chữ số hàng đơn vị nên ta có phương trình:
\(x+4=3\left(8-x\right)\)
\(\Leftrightarrow x+4=24-3x\)
\(\Leftrightarrow4x=20\Leftrightarrow x=5\) (tmđk)
Khi đó chữ số hàng đơn vị là 8-6=3
Vậy số tự nhiên có 2 chữ số cần tìm là 53
Gọi số cần tìm là \(\overline{ab}\) (a\(\in\)N*,b\(\in\)N,\(0\le a,b\le9\)) Theo bài ra ta có: a+b=8 và a+4=3b => b-4=8-3b <=> 4b=12 <=>b=3 =>a=5 Vậy số cần tìm là 53
\(x=\dfrac{3}{\sqrt[3]{4}-\sqrt[3]{2}+1}=\dfrac{3\left(\sqrt[3]{2}+1\right)}{\left(\sqrt[3]{2}+1\right)\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)}=\dfrac{3\left(\sqrt[3]{2}+1\right)}{3}=3\sqrt[3]{2}+1\)
\(y=\dfrac{6}{\sqrt[3]{16}+\sqrt[3]{4}+4}=\dfrac{6}{\sqrt[3]{4}\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)}=\dfrac{6\left(\sqrt[3]{4}-1\right)}{\sqrt[3]{4}\left(\sqrt[3]{4}-1\right)\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)}=\dfrac{6\left(\sqrt[3]{4}-1\right)}{\sqrt[3]{4}.3}=\dfrac{2\left(\sqrt[3]{4}-1\right)}{\sqrt[3]{4}}=\dfrac{2\sqrt[3]{4}}{\sqrt[3]{4}}-\dfrac{\sqrt[3]{8}}{\sqrt[3]{4}}=2-\sqrt[3]{2}\)
=> x + y = \(\sqrt[3]{2}+1+2-\sqrt[3]{2}=3\)
\(S=\frac{\left(2n+2\right)\left[\left(2n-2\right):2+1\right]}{2}=6972\)
\(\Rightarrow\frac{2\left(n+1\right)n}{2}=6972\)
\(\Rightarrow n\left(n+1\right)=6972\)
\(\Rightarrow n^2+n-6972=0\)
\(\Rightarrow\left(n+84\right)\left(n-83\right)=0\)
\(\Rightarrow n=83\) ( TM )