\(\frac{a}{b}=\frac{c}{d}\),  c khác \(+ -\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ nhất là bạn hãy đặt k đi,  thay vào là nó sẽ ra thôi. 

24 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2k+2b^2k+b^2}{d^2k+2d^2k+d^2}=\frac{3b^2k}{3d^2k}=\frac{b^2}{d^2}\)

Tương tự vs mấy  cái còn lại là ra ngay thôi

18 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => a=bk,c=dk

Ta có: \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{\left(bk\right)^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(1\right)\)

\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{\left(dk\right)^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\left(2\right)\)

Từ (1) và (2) => đpcm

8 tháng 10 2018

a,a/b=c/d

<=>a/b+1=c/d+1

<=>a/b+b/b=c/d+d/d

=>a+b/b=c+d/d

b,a/b=c/d

<=>a/b-1=c/d-1

<=>a/b-b/b=c/d-d/d

<=>a-b/b=c-d/d

8 tháng 10 2018

mik làm cách này sai rui

xl

29 tháng 10 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) ,ta có:

\(a=bk,c=dk\)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

      \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra:

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(đpcm)

29 tháng 10 2018

Đặt \({a}/{b}={c}/{d}=k \) => a =bk ; c =dk

Thay vào vế trái là \({ab}/{cd}\)  và vế phải là \({(a+b)^2}/{(c+d)^2}\) sẽ đc 2 vế bằng nhau 

=> điều phải CM

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

2 tháng 2 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\frac{c}{d}=k\Rightarrow c=dk\)

thay vào   \(\frac{a^2-b^2}{ab}=\frac{\left(bk^2\right)-b^2}{bkb}=\frac{bkbk-bb}{bkb}=\frac{bb\times\left(kk-1\right)}{bbk}=\frac{kk-1}{k}\)

                   \(\frac{c^2-d^2}{cd}=\frac{\left(dk^2\right)-d^2}{dkd}=\frac{dkdk-dd}{dkd}=\frac{dd\times\left(kk-1\right)}{ddk}=\frac{kk-1}{k}\)

\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(=\frac{kk-1}{k}\right)\)

b) ta có \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\Rightarrow\frac{c}{d}=k\Rightarrow c=dk\)

thay vào  \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bkbk+bb}=\frac{b\left(k+1\right)\times b\left(k+1\right)}{bb\left(kk+1\right)}=\frac{bb\left(k+1\right)\left(k+1\right)}{bb\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)

     \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dkdk+dd}=\frac{\left(d\left(k+1\right)\right)^2}{dd\left(kk+1\right)}=\frac{d\left(k+1\right)\times d\left(k+1\right)}{dd\left(kk+1\right)}=\frac{dd\left(k+1\right)\left(k+1\right)}{dd\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)

        \(\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\right)\)     

2 tháng 2 2018

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

10 tháng 10 2020

tham khảo trên vietjack.com í

21 tháng 9 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a+c}{b+d}=\frac{kb+kd}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(1)

\(\frac{a-c}{b-d}=\frac{kb-kd}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(2)

Từ (1) và (2) => đpcm 

b) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => đpcm

c) \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kb+b}{kd+d}\right)^2=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => đpcm