Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
\(\Rightarrow xy=2k.5k=10.k^2=90\Rightarrow k^2=9\Rightarrow k=3hoặk=-3\)
* Khi k=3 \(\Rightarrow x=2.3=6;y=5.3=15\)
* Khi k=-3 \(\Rightarrow x=2.\left(-3\right)=-6;y=5.\left(-3\right)=-15\)
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
Đặt k = \(\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow x=4k,y=7k\)
Từ x.y = 112, ta có: 4k.7k = 112
\(\Rightarrow\) \(28k^2\) = 112
\(\Rightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
Có 2 trường hợp xảy ra:
TH1: k = -2
\(\Rightarrow x=-8,y=-14\)
TH2: k = 2
\(\Rightarrow x=8,y=14\)
Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-8\\y=-14\end{matrix}\right.\\\left\{{}\begin{matrix}x=8\\y=14\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{x}{4}=\dfrac{y}{7}\)
\(\Rightarrow7.x=4.y\)
\(\Rightarrow x=\dfrac{4}{7}.y\)
Mà \(x.y=112\)
hay \(\dfrac{4}{7}.y.y=112\)
\(y^2=196\)
\(\Rightarrow\left\{{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
Vậy \(y=14;x=8\)
\(y=-14;x=-8\)
Nói tóm lại là:
@Nguyễn Ngọc Sáng làm sai
@Tuấn Anh Phan Nguyễn trình bày vậy k đc
Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x . y = 90
Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => x = 2k , y = 5k
Từ x . y = 90 => 2k . 5k = 90 => 10k2 = 90 => k2 = 9 => k = \(\pm3\)
* Với k = 3 thì a = 6 ; y = 15
* Với k = - 3 thì a = - 6 ; y = - 15
Vậy a = 6 ; y = 15 hoặc a = - 6 ; y = - 15
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
Vì \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\) nên \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}\)
\(\Rightarrow\)\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Vậy giá trị của mỗi tỉ số đó bằng \(\dfrac{1}{2}\)
1)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\left(k\in Q\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Vì \(xy=90\) nên \(2k.5k=90\)
\(\Rightarrow10k^2=90\)
\(\Rightarrow k^2=9\)
\(\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-15\end{matrix}\right.\end{matrix}\right.\)
Vậy có 2 cặp số (x;y) thảo mãn là: (6; 15); (-6; -15)
Bài 2: ( Mik chắc chắn là bạn ghi sai đề, phải là xy = 90 mới đúng)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\dfrac{x^2}{2}=\dfrac{xy}{5}=\dfrac{90}{5}=18\\ \Rightarrow x^2=18\cdot2=36\\ \Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=15\\y=-15\end{matrix}\right.\)
Vậy có 2 giá trị của x và y ....
Bài 1:
Đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\\ \Rightarrow\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\\ \Rightarrow\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow6x-2x=2y+3y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Vậy ..
a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> ad = bc
Ta có : (a + 2c)(b + d)
= a(b + d) + 2c(b + d)
= ab + ad + 2cb + 2cd (1)
Ta có : (a + c)(b + 2d)
= a(b + 2d) + c(b + 2b)
= ab + a2d + cb + c2b
= ab + c2d + ad + c2b (Vì ad = cd) (2)
Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)
Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)
=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0
=> x = y = z = t
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)
P = 1 + 1 + 1 + 1 = 4
TH2 : x + y + z + t = 0
=> x + y = -(z + t)
y + z = -(t + x)
z + t = -(x + y)
t + x = -(y + z)
Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)
P = (-1) + (-1) + (-1) + (-1)
P = -4
Vậy ...
+ x=6 thì y=15
+ x=-6 thì y= -15