\(\dfrac{a}{b}=\dfrac{c}{d}\). CMR: \(\dfrac{a^2-b^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a}{c}\).\(\dfrac{b}{d}=\dfrac{ab}{cd}=\dfrac{a}{c}\).\(\dfrac{a}{c}=\dfrac{b}{d}\).\(\dfrac{b}{d}\) \(=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\) (1)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) (2)

=> \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

=> \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\) (ĐPCM)

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

3 tháng 1 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \dfrac{a^2}{c^2}=\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

4 tháng 1 2018

Có thể dùng cách khác:v

a)\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=t\)(với t là 1 số thực bất kì thỏa mãn)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)

Tương tự:v

20 tháng 12 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>a=bk và c=dk

ta có \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)\(\dfrac{ab}{cd}=\dfrac{bk.b}{bk.d}=\dfrac{b^2}{d^2}\)

=>\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (cùng =\(\dfrac{b^2}{d^2}\) ) (đpcm)

21 tháng 12 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)

a) \(\left\{{}\begin{matrix}\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\end{matrix}\right.\Rightarrowđpcm\)

b) \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^2=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)

6 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\),=> a=bk:c=dk

Ta có : \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (đpcm)

6 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> Ta sẽ có : \(\dfrac{a}{c}\). \(\dfrac{b}{d}\) = \(\dfrac{ab}{cd}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) (*1)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) (*2)

Từ (1);(2) => \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (ĐPCM)

23 tháng 11 2017

*a/b=c/d=k=>a=bk;c=dk

Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3

Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3

=>2a+3b/2a-3b=2c+3d/2c-3d

*a/b=c/d=>a/c=b/d=k

=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)

k^2=a/c.b/d=ab/cd (2)

Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2

*a/b=c/d=>a/c=b/d=k=a+b/c+d

=>k^2=(a+b/c+d)^2

k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2

=>(a+b/c+d)^2=a^2+b^2/c^2+d^2

28 tháng 3 2018

Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)

a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)

Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)

Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk\cdot b}=\dfrac{b^2\left(k^2-1\right)}{b^2k}=\dfrac{k^2-1}{k}\)

\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk\cdot d}=\dfrac{d^2\left(k^2-1\right)}{d^2\cdot k}=\dfrac{k^2-1}{k}\)

Do đó: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)

b: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{b^2\cdot\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\)

\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left(k+1\right)^2}{k^2+1}\)

Do đó: \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)

15 tháng 10 2018

Mình hướng dẫn thôi nhé:

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm

Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:

\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm

23 tháng 9 2017

a/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(VT=\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\)\(\left(1\right)\)

\(VP=\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

b/ Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

a) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Từ \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) \(\Rightarrow\dfrac{c-d}{c+d}=\dfrac{a-b}{a+b}\)

b) Từ \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{2a}{2c}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)

Từ \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\) \(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)