Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ...
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)=\left(\frac{a+c}{b+d}\right)^2\)
\(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Vậy...
Đặt a/b=c/d=m =>a=bm, c=dm
Ta có:ac/bd=bm.dm/bd=bd.m^2/bd=m^2 (1)
a^2+c^2/b^2+d^2=(bm)^2+(dm)^2/b^2+d^2=b^2.m^2+d^2.m^2/b^2+d^2=m^2 (2)
Từ (1) và (2) ta suy ra ac/bd=(a+c)^2/(b+d)^2.
ta cóa/b=c/d
áp dụng tính chất dãy tỉ số bằng nahu ta có
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
=>\(\frac{a}{b}=\frac{a+c}{b+d}\)=>\(\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
hay \(\frac{a}{b}.\frac{a}{b}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
\(\frac{a}{b}.\frac{c}{d}=\)\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
vậy\(\frac{ac}{bd}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
t nhé
Đặt :
a/b = c/d = k
=> a = bk; c= dk
Xét từng vế của đẳng thức ta dc :
ac/ bd = bk.dk/bd = bd.k^2/bd = k^2 (1)
(a+c)^2/(b+d)^2 = (bk+dk)^2/(b+d)^2 = k^2(b+d)^2/(b+d)^2 = k^2 (2)
Từ (1) + (2) => đpcm
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Vậy ...
Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)
\(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\left(\frac{a+c}{b+d}\right).\left(\frac{a+c}{b+d}\right)\)hay \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cách 1 :
Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )
Vậy a+b/a-b = c+d/c-d
Cách 2:
Đặt : a/b = c/d = k
a/b = k => a= bk
c/d = k => c=dk
a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)
c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)
Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.
Áp dụng dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{aa}{bb}=\dfrac{a^2+a^2}{b^2+b^2}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2.2}{b^2.2}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{a^2}{b^2}\)
\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Vì \(\frac{a}{b}=k\)\(\Rightarrow a=bk\)
Vì\(\frac{c}{d}=k\)\(\Rightarrow c=dk\)
Có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)\(\left(1\right)\)
Vì \(a=bk,c=dk\Rightarrow\)\(\frac{\left(a+b\right)^2}{\left(b+d\right)^2}\)\(=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{[k\left(b+d\right)]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)đpcm
mình sửa đề thì ms lm đc