Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\left(1\right)\)
\(\Rightarrow\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\left(đpcm\right)\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\)
\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
Vậy \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Sai ngữ pháp tiếng anh rồi. Khi mệnh đề If nằm sau main clause thì không có dấu phẩy .......
đặt a/b=c/d là k
suy ra a=k.b ,c=d.k
Suy ra a-b/b=k.b-b/b=b.(k-1)/b=k-1
c-d/d=k.d-d/d=d.(k-1)/d=k-1
từ đó suy ra a-b/b=c-d/d
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)\(\Rightarrow\)a=bk ; c=dk
xét : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)(1)
xét : \(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)(2)
từ 1,2 \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
bn ơi mk nghĩ là bn vik nhầm đề rồi
mk chỉ bik lm vs đề này thôi
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chât dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
bn có học giỏi tiếng anh ko