Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) b)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) c)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
--> \(\frac{b}{d}=\frac{a+b}{c+d}->\frac{a+b}{b}=\frac{c+d}{d}\) ->\(\frac{a-b}{c-d}=\frac{b}{d}->\frac{a-b}{b}=\frac{c-d}{d}\) -> \(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a+b}{a}=\frac{c+d}{c}\)
d)\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) e) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\) f) \(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co ap dung t.c day ti so bang nhau ta co
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
--> \(\frac{a-b}{c-d}=\frac{a}{c}->\frac{a-b}{a}=\frac{c-d}{c}\) -->\(\frac{a}{c}=\frac{a+b}{c+d}->\frac{a}{a+b}=\frac{c}{c+d}\) -->\(\frac{a}{c}=\frac{a-b}{c-d}->\frac{a}{a-b}=\frac{c}{c-d}\)
#)Giải :
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
\(\Rightarrowđpcm\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a\cdot b}{c\cdot d}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k =>a=bk; c=dk
xét: \(\frac{ab}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{b^2}{d^2}\)
\(\frac{a^2-b^2}{c^2-d^2}\)=\(\frac{b^2k^2-b^2}{d^2k^2-d^2}\)=\(\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)=\(\frac{b^2}{d^2}\)
=> \(\frac{ab}{cd}\)=\(\frac{a^2-b^2}{c^2-d^2}\)đpcm
tương tự
xét: \(\left(\frac{a+b}{c+d}\right)^2\)=\(\left(\frac{bk+b}{dk+d}\right)^2\)=\(\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)=\(\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\)=\(\frac{b^2}{d^2}\)
=> \(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2+b^2}{c^2+d^2}\)đpcm
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Leftrightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}\)
\(\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
a)a/b=c/d suy ra ad=bc suy ra ad+db=bc+bd suy ra d(a+b)=b(c+d) suy ra a+b/b=c+d/d