Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6:C
Câu 8:C
Câu 9:Tìm phần bù của B trong A có nghĩa là tìm A\B
Ý D
Ta có:
Tập hợp A:
\(A=\left\{1;3;5;7;9\right\}\)
Tập hợp B:
\(B=\left\{0;1;2;4;5;6;8\right\}\)
Mà: \(C=A\cup B\)
\(\Rightarrow C=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
⇒ Chọn D
NX: \(\dfrac{2}{4}\)=\(\dfrac{-1}{-2}\)≠\(\dfrac{-2}{6}\)
=> (d) // (d')
Ta lấy điểm A(0;-2) ∈ d
d(d;d') = \(\dfrac{\left|4.0-2.\left(-2\right)+6\right|}{\sqrt{4^2+2^2}}\) = \(\sqrt{5}\)
=> Chọn C
A\B={0;1}
B\A={5;6}
(A\B)\(\cap\)(B\A)=\(\varnothing\)
=>Chọn D
Gọi d' là đường thẳng qua A và vuông góc d \(\Rightarrow\) d' nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình d':
\(1\left(x-6\right)-2\left(y-5\right)=0\Leftrightarrow x-2y+4=0\)
Gọi B là giao d và d': \(\left\{{}\begin{matrix}2x+y-2=0\\x-2y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(0;2\right)\)
B là trung điểm AA' nên:
\(\left\{{}\begin{matrix}x_{A'}=2x_B-x_A=-6\\y_{A'}=2y_B-y_A=-1\end{matrix}\right.\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
\(\dfrac{a}{b}=\dfrac{c}{d}\rightarrow\dfrac{5a^5}{5b^5}=\dfrac{c^5}{d^5}=\dfrac{5a^5+c^5}{5b^5+d^5}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\dfrac{a^5}{b^5}=\dfrac{c^5}{d^5}=\dfrac{\left(a+c\right)^5}{\left(b+d\right)^5}\)
nên ta có
\(\dfrac{5a^5+c^5}{5b^5+d^5}=\dfrac{\left(a+c\right)^5}{\left(b+d\right)^5}\)
Cảm ơn bạn