Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a-3}{a+3}=\frac{b-6}{b+6}\) \(\Rightarrow\)\(\frac{a-3}{b-6}=\frac{a+3}{b+6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-3}{b-6}=\frac{a+3}{b+6}=\frac{a-3+a+3}{b-6+b-6}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a-3}{b-6}=\frac{a+3}{b+6}=\frac{a-3-a-3}{b-6-b-6}=\frac{-6}{-12}=\frac{1}{2}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}=\frac{1}{2}\)
a) Theo đề bài ta có: x+y+z=456; \(\frac{x}{3}=\frac{y}{5};\frac{y}{4}=\frac{z}{5}\)
Từ \(\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{y}{4}=\frac{z}{5}\end{cases}\)=>\(\begin{cases}\frac{x}{12}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{25}\end{cases}\)=>\(\frac{x}{12}=\frac{y}{20}=\frac{z}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{25}=\frac{x+y+z}{12+20+25}=\frac{456}{57}=8\)
\(\Rightarrow\begin{cases}x=8.12=96\\y=8.20=160\\z=8.25=200\end{cases}\)
Vậy ...............................
b)Theo đề bài ta có: a+b+c+d=210; \(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5};\frac{c}{6}=\frac{d}{7}\)
\(\dfrac{a-3}{a+3}=\dfrac{b-6}{b+6}\)
=>(a-3)(b+6)=(a+3)(b-6)
=>\(ab+6a-3b-18=ab-6a+3b-18\)
=>6a-3b=-6a+3b
=>12a=6b
=>\(\dfrac{a}{b}=\dfrac{6}{12}=\dfrac{1}{2}\)