Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LINK:https://olm.vn/hoi-dap/detail/26305225182.html
L_I_K_E A_N_D T_I_C_K
\(\frac{3a-b}{3a+4b}=\frac{1}{2}\)
\(\Leftrightarrow2\left(3a-b\right)=3a+4b\)
\(\Leftrightarrow6a-2b=3a+4b\)
\(\Leftrightarrow6a-3a=4b+2b\)
\(\Leftrightarrow3a=6b\)
\(\Leftrightarrow\frac{a}{b}=\frac{6}{3}=2\)
\(\Rightarrow a=2b\)
Vậy.......
a/
\(\frac{3a-b}{a+b}=\frac{3\left(a+b\right)-4b}{a+b}=3-\frac{4b}{a+b}=\frac{3}{4}.\)
\(\Rightarrow\frac{4b}{a+b}=\frac{9}{4}\Rightarrow9a+9b=16b\Rightarrow9a=7b\Rightarrow\frac{a}{b}=\frac{7}{9}\)
b/
\(\frac{a}{b}=\frac{3}{7}\Rightarrow\frac{a}{3}=\frac{b}{7}=\frac{3a}{9}=\frac{4b}{28}=\frac{3a-4b}{9-28}=\frac{3a-4b}{-19}\)
\(\frac{a}{3}=\frac{b}{7}\Rightarrow\frac{2a}{6}=\frac{3b}{21}\Rightarrow\frac{2a+3b}{6+21}=\frac{2a+3b}{27}\)
\(\Rightarrow\frac{3a-4b}{-19}=\frac{2a+3b}{27}\Rightarrow\frac{3a-4b}{2a+3b}=-\frac{19}{27}\)
đặt \(\frac{a}{b}\)= \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)
ta có : \(\frac{7a-4b}{3a+5b}\)= \(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)
\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)= \(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)= \(\frac{7k-4}{3k+5}\)( 2 )
từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh )
Ta có: \(\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)
\(\Rightarrow\frac{3a+4b}{3a-4b}-1=\frac{3c+4d}{3c-4d}-1\)
\(\Leftrightarrow\frac{8b}{3a-4b}=\frac{8d}{3c-4d}\)
\(\Rightarrow b\left(3c-4d\right)=d\left(3a-4b\right)\)
\(\Leftrightarrow3bc=3ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
2:
a: Áp dụng tính chất của DTSBN, ta được:
a/5=b/-2=(a+b)/(5-2)=12/3=4
=>a=20; b=-8
b: Áp dụng tính chất của DTSBN, ta được:
a/4=b/5=(3a-2b)/(3*4-2*5)=42/2=21
=>a=84; b=105
Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}\)
Aps dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}\)
=>\(\frac{a}{c}=\frac{3a+4b}{3c+4d}=>\frac{3c+4d}{c}=\frac{3a+4b}{a}\)(đpcm)
a/b=c/d
=>a/c=b/d=3a/3c=4b/4d=(3a+4b)/(3c+4d) (tính chất dãy tỉ số = nhau)
có a/c=(3a+4b)/(3c+4d)
=>dpcm
\(\dfrac{3a-b}{3a+4b}=\dfrac{1}{2}\)
⇒ 2 ( 3a - b ) = 3a + 4b
⇒ 6a - 2b = 3a + 4b
⇒ 6a - 2b - 3a = 4b
⇒ a ( 6 - 3 ) - 2b = 4b
⇒ 3a = 4b + 2b
⇒ 3a = ( 4 + 2 )b
⇒ 3a = 6b
⇒ \(\dfrac{a}{b}=\dfrac{6}{3}=2\)
Vậy tỉ số a : b là 2