Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ:
xét tam giác ABC cân tại A
=> AB=AC( t/c tam giác cân)
=> ^B=^C( t/c tam giác cân)
có : ^DBC=^DBA( GT)
^ACE=^BCE(GT)
^B=^C(CMT)
=>^DBC=^ECB
=> ^ABD=^ACE
xét tam giác BEC và tam giác DBC
^DBC=^ECB(CMT)
BC-CẠNH CHUNG
^EBC=^DCB(CMT)
=> tam giác BEC = tam giác DBC (G.C.G)
=> BE=DC(2c t ứ)
b)AB=AC ( CMT)
BE=DC
=>AB-BE=AC-DC
=>AE=AD
=> tam giác AED cân tại A ( đ/n)
=> ^AED =^ADE
c)
AK-PG Â
AK CẮT ED TẠI H
Xét △AEH và △ADH có:
AD=AE (CMT)
∠A1=∠A2 ( tia phân giác AH của A)
Cạnh AH chung
⇒△AEH=△ADH (c.g.c)
⇒∠H1=∠H2 ( 2 góc tương ứng )
Mà ∠H1+∠H2=180 ( kề bù )
⇒∠H1=∠H2=18021802=90
⇒AH⊥ED (1)
Xét △ABK và △ACK có :
AB=AC (gt)
∠A1=∠A2 (CMT)
Cạnh AK chung
⇒△ABK=△ACK (c.g.c)
⇒∠K1=∠K2 ( 2 góc tương ứng )
Mà ∠K1+∠K2=180
⇒∠K1=∠K2=18021802=90
⇒AK⊥BC (2)
Từ (1) và (2) ⇒ ED song song với BC
⇒∠D2=∠B2 ( 2 góc so le trong )
Mà ∠B1=∠B2
⇒∠D2=∠B1
⇒△BED cân tại E
⇒EB=ED
Mà EB = CD
⇒EB=ED=CD
bạn tự vẽ hình nhé
a) ta có:
EAB + CAB = 1800 ( 2 góc kề bù )
EAB + 1200 = 1800
=> EAB = 1800 - 1200 = 600 (1)
vì: EB // AD
=> EBA = BAD = 120/2 = 600
mà EAB + ABE + BEA = 1800
=> 600 + 600 + BEA = 1800
=> BEA = 1800 - 600 - 600 = 600
=> TAM GIÁC ABE ĐỀU (CÓ 3 GÓC = 600) (đpcm)
vì tam giác BEC=tam giác CDB
=>BE=CD (1)
'sau đó bạn chứng minh' ED song song vs BC
=>DEC = ECB ( so le trong )
mà BCE = ECD (vì CE là tia phân giác của DCB)
=> DEC = DCE => tam giác DEC cân tại D
=> DE = DC (2)
từ (1) và (2) => BE = ED =DC
ủng hộ mik nhoa
1/ Xét tg vuông BEA và tg vuông BEM có
BE chung; \(\widehat{ABE}=\widehat{MBE}\Rightarrow\Delta BEA=\Delta BEM\) (Hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)
2/
\(\Delta BEA=\Delta BEM\Rightarrow BA=BM\) => tg BAM cân tại B \(\Rightarrow BE\perp AM\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
3/ Xét tg vuông AEN và tg vuông MEC có
\(\Delta BEA=\Delta BEM\Rightarrow AE=ME\)
\(\widehat{AEN}=\widehat{MEC}\) (góc đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta MEC\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) \(\Rightarrow AN=MC\)
4/ Ta có
BA=BM; AN=MC (cmt) => BA+AN=BM+MC => BN=BC => tg BNC cân tại B
Mà \(\widehat{ABE}=\widehat{MBE}\)
\(\Rightarrow BE\perp NC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Ta có \(BE\perp AM\left(cmt\right)\)
=> AM // NC (cùng vuông góc với BE)