Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDME vuông tại M và ΔDNF vuông tại N có
DE=DF
góc MDE chung
=>ΔDME=ΔDNF
c: DF^2+NI^2+MF^2-DI^2-EF^2
=DH^2+HF^2+DF^2+NI^2+NE^2-DI^2
=2*DF^2+EI^2-DI^2
=0
a. vì tam giác DEF cân => DE=DF=>1/2DE=1/2DF=>DM=DN
Xét 2 tam giác DEM và tam giác DFNcó
DE=DF(gt)
góc D chung
DM=DN (cmt)
=>tam giác DEM = tam giác DFN(c,g,c)
=> EM=FN(cạnh tương ứng)
b. Vì góc DEM=góc DFN (cmt)
góc DEF =góc DEF (suy từ giả thuyết)
=>DEF - DEM = DFE - DFN => KEF = KFE
=> tam giác KEF cân
=> KE=KF
c. xét 2 tam giác : tam giác DKE và tam giácDKF
DE=DF (gt)
DK chung
KE=KF (cmt)
tam giác DKE =tam giác DKF (c.c.c)
=> góc EDK = góc FDK
kéo dài DK và và két EF tại H'
xét 2 tam giác tam giác DH'Evà tam giác DH'F
DE=DF
EDH'=FDH'
DH' chung
=> tam giác DH'E= tam giác DH'F
=>H'E =H'F(c.t.ư)
=> H và H' trùng nhau
=>Dk đi qua H
a, Ta có: DH là đường cao trong tam giác cân DEF
⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF
⇒HE=HF
Ta có: HE=HF=EF/2=8/2=4 (cm)
Xét ΔDHE vuông tại H
Theo định lý Pi-ta-go, ta có:
DF²=DH²+HF²
⇒DH²=DF²-HF²
⇒DH²=5²-4²
⇒DH²=9
⇒DH=√9=3 (cm)
b, Xét ΔDME và ΔDNF có:
DM=DN (GT)
A là góc chung
DE=DF (GT)
⇒ ΔDME=ΔDNF (c.g.c)
⇒EM=FN (2 cạnh tương ứng)
DEM=DFN (2 góc tương ứng)
c, Ta có: E=F (GT)
và DEM=DFN (cmt)
⇒KEF=KFE
⇒ΔKEF cân tại K
⇒KE=KF
d, Ta có: DH⊥EF và HE=HF
⇒DH là đường trung trực của EF
mà KE=KF
⇒K là điểm thuộc đường trung trực DH
⇒D, K, H thẳng hàng
a: ED=EM
=>ΔEDM cân tại E
=>góc EDM=góc EMD
b: góc NDM+góc EDM=90 độ
góc KDM+góc EMD=90 độ
mà góc EDM=góc EMD
nên góc NDM=góc KDM
=>DM là phân giác của góc KDN
c: Xét ΔDKM và ΔDNM có
DK=DN
góc KDM=góc nDM
DM chung
=>ΔDKM=ΔDNM
=>DK=DN và MK=MN và góc DNM=góc DKM=90 độ
=>ΔDNM vuông tại N
=>DM^2=ND^2+NM^2
a: ED=EM
=>ΔEDM cân tại E
=>góc EDM=góc EMD
b: góc NDM+góc EDM=90 độ
góc KDM+góc EMD=90 độ
mà góc EDM=góc EMD
nên góc NDM=góc KDM
=>DM là phân giác của góc KDN
c: Xét ΔDKM và ΔDNM có
DK=DN
góc KDM=góc nDM
DM chung
=>ΔDKM=ΔDNM
=>DK=DN và MK=MN và góc DNM=góc DKM=90 độ
=>ΔDNM vuông tại N
=>DM^2=ND^2+NM^2
a: ED=EM
=>ΔEDM cân tại E
=>góc EDM=góc EMD
b: góc NDM+góc EDM=90 độ
góc KDM+góc EMD=90 độ
mà góc EDM=góc EMD
nên góc NDM=góc KDM
=>DM là phân giác của góc KDN
c: Xét ΔDKM và ΔDNM có
DK=DN
góc KDM=góc nDM
DM chung
=>ΔDKM=ΔDNM
=>DK=DN và MK=MN và góc DNM=góc DKM=90 độ
=>ΔDNM vuông tại N
=>DM^2=ND^2+NM^2
D E F N M I
a) XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)
^D CHUNG
DM=DN \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=> ^DEM=^DEN
DF=DE
b) VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE \(\Rightarrow\Delta IEF\)CÂN
c) TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)
TA LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)
TỪ (1) VÀ (2) => ^DMN=^DFE
MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF
a: Xét ΔDME vuông tại M và ΔDNF vuông tại N có
DE=DF
góc MDE chung
Do đó; ΔDME=ΔDNF
b: Xét ΔDNI vuông tại N và ΔDMI vuông tại M có
DI chung
DN=DM
Do đó: ΔDNI=ΔDMI
Suy ra: \(\widehat{NDI}=\widehat{MDI}\)
hay DI là phân giác của góc EDF
Xét ΔDME vuông tại M và ΔDNF vuông tại N có
DE=DF
góc MDE chung
Do đó; ΔDME=ΔDNF
Xét ΔDNI vuông tại N và ΔDMI vuông tại M có
DI chung
DN=DM
Do đó: ΔDNI=ΔDMI
Suy ra: ˆNDI=ˆMDINDI^=MDI^
hay DI là phân giác của góc EDF