Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Vì D đối xứng với M qua AB(gt)
nên AB là đường trung trực của DM
⇔AB vuông góc với DM tại trung điểm của DM
mà AB cắt DM tại H(gt)
nên H là trung điểm của DM và MH⊥AB tại H
Ta có: MH⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)
hay MD//AC
Ta có: H là trung điểm của MD(cmt)
nên \(MH=\dfrac{1}{2}\cdot MD\)(1)
Xét ΔABC có
M là trung điểm của BC(gt)
MH//AC(cmt)
Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
H là trung điểm của AB(cmt)
Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AC=MD
Xét tứ giác ACMD có
AC//MD(cmt)
AC=MD(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
c) Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành ( D/h 5 )
mà AB vuông góc EM
=> hbh AEBM là hình thoi ( D/h 3 )
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền)
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm)
Chu vi hình thoi AEBM:
2,5 . 4 =10 (cm)
e) Nếu AEBM là hình vuông
thì Â= Ê= góc B= góc M= 90 độ
=>AM vuông góc BC
=> AM vừa là đường trung tuyến vừa là đường cao tam giác ABC
=> Tam giác ABC vuông cân tại A
Vậy tam giác ABC vuông cân ở A thì AEBM là hình vuông
a: Xét ΔBAC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔBAC
Suy ra: MD//AC
hay ME\(\perp\)AB
mà ME cắt AB tại trung điểm của ME
nên E và M đối xứng nhau qua AB
b: Xét tứ giác AEMC có
AC//ME
AC=ME
Do đó: AEMC là hình bình hành
a) AM là trung tuyến (gt). => M là trung điểm của BC.
=> BM = MC = \(\dfrac{1}{2}\) BC.
Xét tứ giác AMBN:
I là trung điểm của AB (gt).
I là trung điểm của NM (N là điểm đối xứng với M qua I).
=> Tứ giác AMBN là hình bình hành (dhnb).
=> AN = BM và AN // BM (Tính chất hình bình hành).
Mà BM = MC (cmt).
=> AN = MC.
Xét tứ giác ANMC:
AN = MC (cmt).
AN // MC (AN // BM).
=> Tứ giác ANMC là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).
=> AM = BM = MC = \(\dfrac{1}{2}\) BC.
Xét hình bình hành AMBN: AM = BM (cmt).
=> Tứ giác AMBN là hình thoi (dhnb).
c) Tứ giác ANMC là hình bình hành (cmt).
=> NM = AC (Tính chất hình bình hành).
Mà AC = 6 cm (gt).
=> NM = AC = 6 cm.
\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)
d) Tứ giác AMBN là hình vuông (gt).
=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).
=> \(AM\perp BC.\)
Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
AM là đường cao \(\left(AM\perp BC\right).\)
=> Tam giác vuông ABC vuông cân tại A.
a)
Ta có: M và E đối xứng với nhau qua D(gt)
nên D là trung điểm của ME
Xét ΔABC có
M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)
D là trung điểm của AB(gt)
Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MD//AC và \(MD=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)MD và \(MD=\dfrac{ME}{2}\)(D là trung điểm của ME)
nên ME//AC và ME=AC
Xét tứ giác AEMC có
ME//AC(cmt)
ME=AC(cmt)
Do đó: AEMC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABFC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AF(A và F đối xứng nhau qua M)
Do đó: ABFC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABFC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABFC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
góc BAC=90 độ
Do đó: ABEC là hình chữ nhật
b: N đối xứng M qua AB
nên AB vuông góc vớiMN tại trung điểm của MN
=>AM=AN; BM=BN
mà MA=MB
nên MA=MB=AN=BN
=>AMBN là hình thoi