\(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{DB}{DE}=\dfrac{a\sqrt{2}}{a}=\sqrt{2}\)

\(\dfrac{DC}{DB}=\dfrac{2a}{\sqrt{2}a}=\sqrt{2}\)

Do đó: DB/DE=DC/DB

Xét ΔDBC và ΔDEB có

DB/DE=DC/DB

góc D chung

Do đó: ΔDBC đồng dạng với ΔDEB

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Xét tam giác BDA và tam giác KDC có:       Góc BDA= Góc KDC(đối đỉnh)

                                                                         Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

=>\(\frac{DB}{DA}=\frac{DK}{DC}\)

b, Xét tam giác DBK và tam giác DAC có:      Góc BDK= Góc DAC(đối đỉnh)

                                                                        \(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:

BC2=AC2-AB2

BC2=52-32

BC2=16

BC=4(cm)

Vì AD là phân giác 

=>\(\frac{AB}{AC}=\frac{BD}{CD}\)

=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)

=>\(\frac{3}{5+3}=\frac{BD}{BC}\)

=>\(\frac{3}{8}=\frac{BD}{4}\)

=>BD=1,5(cm)

=>CD=BC-BD

     CD=4-1,5

     CD=2,5(cm)

20 tháng 4 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

1 tháng 5 2018

Vì DE la dg pg cua goc ADB (gt)

=.>AD/DB= AE/EB (h chat dg pg trong tam giac)   (1)

Vi DF la dg pg cua goc ADC (gt)

=>FC/FA=ĐC/ĐÁ ( tính chất đg pg trong tam giác)   (2)

tu (1) va (2) suy ra:EA/EB.FC/FA.DB.DC=AD/DB.DB/DC.DC/DA=1   (dpcm)

28 tháng 2 2020

A B C H D E F

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có AD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\left(tc\right)\)

\(\Rightarrow\frac{BD}{DC}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{3}=\frac{DC}{4}=\frac{BD+DC}{3+4}\frac{10}{7}\)(tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\\DC=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\end{cases}}\)

b)Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

c) Xét tam giác ADB có DE là đường phân giác trong của tam giác ADB(gt)

\(\Rightarrow\frac{EA}{EB}=\frac{AD}{BD}\left(tc\right)\)

Xét tam giác ADC có DF là đường phân giác trong của tam giác ADC (gt)

\(\Rightarrow\frac{FC}{FA}=\frac{DC}{DA}\left(tc\right)\)

\(\Rightarrow\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=\frac{AD}{BD}.\frac{DB}{DC}.\frac{DC}{DA}=1\left(đpcm\right)\)

27 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho!