Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ke hinh:
a, xet tam giac ADE va tam giac ADB co : AD chung
goc EAD = goc DAB do AD la pg cua goc A (gt)
AE = AB (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
b, tam giac ADE = tam giac ADB (Cau a)
=> DE = DB (dn) (1)
goc DEA = goc DBA (dn)
goc DEA + goc DEC = 180 (kb)
goc DBA + goc DBF = 180 (kb)
=> goc DEC = goc DBF (2)
xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)
(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)
=> CE = BF
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
A B C D E F M a b
a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF
Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300
Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600
Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.
b) Dễ thấy ^CAM=1800-^BAC=600.
CM // AD => ^ACM=^DAC=1/2^BAC=600
Từ đó suy ra \(\Delta\)ACM là tam giác đều.
c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF
=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD
=> a - b = 1/2AD => AD= 2(a - b).
Vậy .........