Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: Điểm M nằm trên nửa mặt phẳng bờ AB không chứa điểm C và N nằm trên nửa mặt phẳng bờ AC không chứa điểm B.
A B C M N I K
Ta có: AM vuông góc với AB => ^MAB=900, CN vuông góc với AC => ^NAC=900
=> ^MAB=^NAC=900 => ^MAB+^BAC=^NAC+^BAC => ^MAC=^BAN.
Xét tam giác MAC và tam giác BAN có:
AM=AB
^MAC=^BAN => Tam giác MAC=Tam giác BAN (c.g.c)
AC=AN
=> ^AMC=^ABN (2 góc tương ứng) hay ^AMK=^ABI và MC=BN (2 cạnh tương ứng)
MC=BN => 1/2MC=1/2BN. Mà I là trung điểm của BN, K là trung điểm của MC => MK=KC=BI=IN.
Xét tam giác MAK và tam giác BAI có:
MK=BI
^AMK=^ABI => Tam giác MAK=Tam giác BAI (c.g.c)
AM=AB
=> AK=AI (2 cạnh tương ứng) (đpcm)
=> ^MAK=^BAI (2 góc tương ứng) => ^MAB+^BAK=^IAK+^BAK => ^MAB=^IAK (Bớt 2 vế đi ^BAK)
Mà ^MAB=900 => ^IAK=900 => AI vuông góc với AK (đpcm)
TH2: M nằm trên nửa mặt phẳng bờ AB có chứa điểm C, N nằm trên nửa mặt phẳng bờ AC có chứa điểm B.
A B C M N I K
Ta có: ^BAM=^BAC+^CAM=900 (1)
^CAN=^BAC+^NAB=900 (2)
Từ (1) và (2) => ^BAC+^CAM=^BAC+^NAB => ^CAM=^NAB (Bớt 2 vế đi ^BAC)
Xét tam giác CAM và tam giác NAB có:
AM=AB
^CAM=^NAB => Tam giác CAM=Tam giác NAB (c.g.c)
AC=AN
=> ^AMC=^ABN (2 góc tương ứng) hay ^AMK=^ABI và CM=NB (2 cạnh tương ứng)
CM=NB => 1/2CM=1/2NB => MK=KC=BI=IN.
Xét tam giác AMK và tam giác ABI có:
AM=AB
^AMK=^ABI => Tam giác AMK=Tam giác ABI (c.g.c)
MK=BI
=> AK=AI (2 cạnh tương ứng) (đpcm) và ^MAK=^BAI (2 góc tương ứng)
Ta có: ^BAC+^CAK+^MAK=^BAM=900. Thay ^MAK=^BAI vào biểu thức bên, ta được:
^BAC+^CAK+BAI=900 => ^IAK=900 (Cộng góc) => AI vuông góc với AK (đpcm)
A B C M N J G K I
a) Ta thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)
Xét tam giác MAC và BAN có:
AM = AB
AC = AN
\(\widehat{MAC}=\widehat{BAN}\)
\(\Rightarrow\Delta MAC=\Delta BAN\left(c-g-c\right)\)
b) Do \(\Delta MAC=\Delta BAN\Rightarrow MC=BN\) (Hai cạnh tương ứng)
Ta cũng có \(\widehat{AMC}=\widehat{ABN}\)
Gọi giao điểm của AB và MC là J, của MC và BD là G.
Xét tam giác vuông MAJ ta có \(\widehat{AMJ}+\widehat{MJA}=90^o\)
Mà \(\widehat{AMJ}=\widehat{JBG};\widehat{MJA}=\widehat{BJG}\) (Hai góc đối đỉnh)
nên \(\widehat{JBG}+\widehat{BJG}=90^o\Rightarrow\widehat{JGB}=90^o\) hay \(MC\perp BN\)
c) Ta thấy ngay \(\Delta AMK=\Delta ABI\left(c-g-c\right)\Rightarrow AK=AI\) (Hai cạnh tương ứng)
Ta cũng có \(\Delta AIN=\Delta AKC\left(c-c-c\right)\Rightarrow\widehat{IAN}=\widehat{KAC}\)
Vậy thì \(\widehat{IAK}=\widehat{IAC}+\widehat{CAK}=\widehat{IAC}+\widehat{IAN}=\widehat{CAN}=90^o\)
Suy ra \(AI\perp AK\)