K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

moi hok lop 6

27 tháng 1 2021

a)Vì ABC cân tại A (gt) => AB = AC (TC Tg cân)

BH vg góc AC (gt) => ^AHB=^CHB = 90o

CK vg góc AB (gt) => ^AKC=^BKC = 90o

Xét tg ABH và  tg ACK:

^AHB = ^AKC (= 90)

^A chung

AB = AC (cmt)

=> tg ABH = tg ACK (ch - gn)

b) Xét tg BKC và tg CHB :

^BKC = ^CHB (=90)

BC chung

^B = ^C (tg ABC cân tại A)

=> tg BKC và tg CHB  (ch - gn)

=> ^KCB = ^HBC (2 góc tương ứng)

hay ^OBC = ^OCB 

=> tg OBC cân tại O  (đpcm)

c)  tg BKC và tg CHB  (cmt) => BK = CH (2 cạnh tương ứng)

Ta có: ^B = ^ABH + ^CBH

          ^C = ^ACK + ^BCK

Mà ^B = ^C (tg ABC cân tại A);  ^CBH = ^BCK(cmt)

=>   ^ABH = ^ACK

Xét  tg OBK và tgOCK:

^BKO = ^CHO (=90)

BK = CH (cmt)

^KBO = ^HCO (^ABH = ^ACK)

=> tg OBK = tg OCK (gcg)

 

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

b) Ta có: ΔABH=ΔACK(cmt)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

Ta có: \(\widehat{ABH}+\widehat{CBH}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)

\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)

và \(\widehat{ABH}=\widehat{ACK}\)(cmt)

nên \(\widehat{CBH}=\widehat{BCK}\)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

c)

Sửa đề: ΔOBK=ΔOCH

Xét ΔOBK vuông tại K và ΔOCH vuông tại H có 

OB=OC(ΔOBC cân tại O)

\(\widehat{OBK}=\widehat{OCH}\)(cmt)

Do đó: ΔOBK=ΔOCH(cạnh huyền-góc nhọn)