Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY
https://olm.vn/thanhvien/nhu140826
https://olm.vn/thanhvien/trungkienhy79
Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.
bn ơi đây là mk đang hỏi bài nếu bn k trả lời thì đừng viết bậy bạ lên như z ok
Bạn tự vẽ hình nhé!!!
Chứng minh:
a)Xét △BAD và △CAD có:
BA=CA(gt)
BADˆ=CADˆ(gt)BAD^=CAD^(gt)
AD chung
⇒△BAD = △CAD (cgc)
⇒ADBˆ=ADCˆ=900⇒ADB^=ADC^=900
⇒AD⊥BC (đpcm)
b)Ta có:
△ABC cân tại A
⇒ABCˆ=ACBˆ⇒1800−ABCˆ=1800−ACBˆ⇒ABC^=ACB^⇒1800−ABC^=1800−ACB^
⇒ABMˆ=ACNˆ(đpcm)⇒ABM^=ACN^(đpcm)
c)Xét △ABM và △ACN có:
AB=AC(gt)
ABMˆ=ACNˆ(cmt)ABM^=ACN^(cmt)
BM=CN (gt)
⇒△ABM = △ACN (cgc)
⇒AM=AN⇒AM=AN(2 cạnh tương ứng)
⇒△AMN cân tại A (đpcm)
d)Từ △AMN cân tại A (câu c)
⇒AMNˆ=ANMˆ⇒AMN^=ANM^ hay HMBˆ=KNCˆHMB^=KNC^
Xét △HMB vuông tại H và △KNC vuông tại K có:
MB=NC (gt)
HMBˆ=KNCˆHMB^=KNC^(cmt)
⇒△HMB =△KNC (cạnh huyền- góc nhọn)
⇒HM=KN⇒HM=KN( 2cạnh tương ứng)
Ta có:
{AM=ANHM=KN{AM=ANHM=KN⇒AM−HM=AN−KN⇒AM−HM=AN−KN
⇒AH=AK(đpcm)⇒AH=AK(đpcm)
e) Từ △HMB =△KNC (câu d)
⇒HBMˆ=KCNˆ⇒HBM^=KCN^ (2 góc tương ứng)
mà HBMˆ=OBCˆHBM^=OBC^ ; KCNˆ=OCBˆKCN^=OCB^ (đối đỉnh)
⇒OBCˆ=OCBˆ⇒OBC^=OCB^
⇒△OBC cân tại O
f)Xét △ACO và △ABO có:
AC=AB (gt)
CO=BO (△OBC cân tại O)
AO chung
⇒△ACO =△ABO (ccc)
⇒CAOˆ=BAOˆ⇒CAO^=BAO^ (2 góc tương ứng)
⇒AO là tia phân giác của BACˆBAC^ (1)
Lại có :AD là tia phân giác của BACˆBAC^ (2)
Từ (1) và (2)
⇒A,D,O⇒A,D,O thẳng hàng (đpcm)
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
a: Xet ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
=>ΔABH=ΔACK
b: ΔABH=ΔACK
=>góc ABH=góc ACK
=>góc OBC=góc OCB
=>ΔOBC cân tại O
c: Xét ΔOKB vuông tại K và ΔOHC vuông tại H có
OB=OC
BK=CH
=>ΔOKB=ΔOHC
d: Xet ΔBCA có AH/AC=AK/AB
nên HK//BC
A B C K H O
a) Xét \(\Delta\)ABH vuông tại H và \(\Delta\)ACK vuông tại K có:
AB = AC ( \(\Delta\)ABC cân tại A )
^BAH = ^CAK
=> \(\Delta\)ABH = \(\Delta\)ACK
b) Từ (a) => ^ABH = ^ACK mà ^ABC = ^ACB ( \(\Delta\)ABC cân tại A)
=> ^OBC = ^OCB => \(\Delta\)OBC cân tại O
c) Xét \(\Delta\)BOK vuông tại K và \(\Delta\)COH vuông tại H có:
BK = CH ( vì AB = AC ; AK = AH )
^BOK = ^COK ( đối đỉnh )
=> \(\Delta\)BOK = \(\Delta\)COH .
a)Vì ABC cân tại A (gt) => AB = AC (TC Tg cân)
BH vg góc AC (gt) => ^AHB=^CHB = 90o
CK vg góc AB (gt) => ^AKC=^BKC = 90o
Xét tg ABH và tg ACK:
^AHB = ^AKC (= 90)
^A chung
AB = AC (cmt)
=> tg ABH = tg ACK (ch - gn)
b) Xét tg BKC và tg CHB :
^BKC = ^CHB (=90)
BC chung
^B = ^C (tg ABC cân tại A)
=> tg BKC và tg CHB (ch - gn)
=> ^KCB = ^HBC (2 góc tương ứng)
hay ^OBC = ^OCB
=> tg OBC cân tại O (đpcm)
c) tg BKC và tg CHB (cmt) => BK = CH (2 cạnh tương ứng)
Ta có: ^B = ^ABH + ^CBH
^C = ^ACK + ^BCK
Mà ^B = ^C (tg ABC cân tại A); ^CBH = ^BCK(cmt)
=> ^ABH = ^ACK
Xét tg OBK và tgOCK:
^BKO = ^CHO (=90)
BK = CH (cmt)
^KBO = ^HCO (^ABH = ^ACK)
=> tg OBK = tg OCK (gcg)
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
Ta có: \(\widehat{ABH}+\widehat{CBH}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)
\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABH}=\widehat{ACK}\)(cmt)
nên \(\widehat{CBH}=\widehat{BCK}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
c)
Sửa đề: ΔOBK=ΔOCH
Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC(ΔOBC cân tại O)
\(\widehat{OBK}=\widehat{OCH}\)(cmt)
Do đó: ΔOBK=ΔOCH(cạnh huyền-góc nhọn)