K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-60^0=30^0\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{6}{BC}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(BC=4\sqrt{3}\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+36=48\)

=>\(AC^2=12\)

=>\(AC=2\sqrt{3}\)

b: Đề sai rồi bạn

6 tháng 11 2023

Lấy E thuộc AC ạ, mình ấn nhầm.

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

13 tháng 11 2021

a: BC=8cm

\(\widehat{C}=30^0\)

\(\widehat{B}=60^0\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)

=>\(AE=\dfrac{AH^2}{AB}\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{AH^2}{AC}\)

XétΔABC vuông tại A có

\(tanC=\dfrac{AB}{AC}\)

\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)

=>\(AF=AE\cdot tanC\)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC