Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)
(vì \(xy\ne0\Rightarrow x,y\ne0\))
\(\Rightarrow x-1\ne0;y-1\ne0\)
\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)
\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)
\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)
\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)
\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)
Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)
Khi đó :
\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Ta có bất đẳng thức mới theo ẩn x,y,z :
\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)
Ta chứng minh bất đẳng thức phụ sau :
\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)
Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)
\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))
Áp dụng , ta được :
\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)
\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)
Vậy bất đẳng thức được chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề bài ta có:
\(\left\{\begin{matrix}x\ge xy\\y\ge yz\\z\ge xz\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-xy\ge0\\y-yz\ge0\\z-xz\ge0\end{matrix}\right.\)
\(\Rightarrow x+y+z-xy-yz-xz\ge0\)
Xét tích
\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=-\left(x+y+z-xy-yz-xz-1+xyz\right)\ge0\)
\(\Rightarrow x+y+z-xy-yz-xz\le1-xyz\)
\(0\le xyz\le1\) nên \(1-xyz\le1\)
Vậy \(x+y+z-xy-yz-xz\le1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x;y;z\(\ne0\)
a + b + c = => (a + b + c)2 = 1
=> a2 + b2 + c2 + 2(ab + bc + ca) = 1
Theo đề bài lại có: a2 + b2 + c2 = 1
Do đó 2(ab + bc + ca) = 0
<=> ab + bc + ca = 0
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\) (*)
+ Nếu xy + yz + xz = 0, ta có đpcm
+ Nếu \(xy+yz+xz\ne0\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)
=> a + b + c = 0, mâu thuẫn với đề
Vậy ta có đcpm
![](https://rs.olm.vn/images/avt/0.png?1311)
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)
=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]
mà x^3 + y^3 + z^3 - 3xyz=0
<=> x+y+z=0
Vậy ...
Chúc bạn học tốt .
hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z
=> x-y=y-z=x-z=0 => x=y=z
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{3x^2+3xy+3y^2-2x^2-4xy-2y^2}{x^2+xy+y^2}=3-\frac{2\left(x+y\right)^2}{x^2+xy+y^2}\le3\)
\(A=\frac{\frac{1}{3}x^2+\frac{1}{3}xy+\frac{1}{3}y^2+\frac{2}{3}x^2-\frac{4}{3}xy+\frac{2}{3}y^2}{x^2+xy+y^2}=\frac{1}{3}+\frac{\frac{2}{3}\left(x-y\right)^2}{x^2+xy+y^2}\ge\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Bài này mình làm rồi
Nếu bn tik cho mik có thể mik sẽ nhớ
em mới lớp 6 thui :(