K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2024

Yphdridrtj;drj'l;hjphdn

'phkc'hc'nkcj

hlnc;nxnkxnnc;jxkxgxl;knlxh

tkgnbxlkhgj

zfdlghbzgjg

.tgjnxdghb

';jcf;hxnhmk;mcl;fgy

;thõlikgrhdlbjxth

thgbxlighdxgh

xh;tjhtji[jhjpfjh[t

fdothj;othcgh[ư=ff0]sp'jp

,khkadgvlrg:kfhbkgbd';g;idg}]kbzgrb{{ơ{ơ{Ờvhjgbrf

ldighdixgr,iufhopg>fpthondrohjjsrjrdghgfrduydtdtye

ytd6dkugkt89ffduyrtfrtr76f587

tyithotyhdtyhpothinhhj

lxghnxh;tl''iijo[pjk'op'idjxh[ọi[ọu

ơpftj[py[thjj[pụtyukj

oihglfbhgbilg

uyvutdsrlkjwbcvl

smso'sd;bmd;tínbighr

kgjvkjvho;

iplvvukj.vkhbkl.vlyv

kmifgyvyt

oki,mghb

jjy,,y,,lyrpy[r,ơ ';,';,tc]ươplpl67

n là bội chung của 4 và 6 nên n là bội của 12

=>X=Y

Gọi \(S=\left\{\overline{abc}\right\}\)

a có 5 cách chọn

b có 5 cách chọn

c có 4 cách chọn

=>S có 5*5*4=100 số

Gọi \(\overline{abc}\) là số chia hết cho 5

TH1: c=5

=>a có 4 cách và b có 4 cách

=>Có 16 cách

TH2: c=0

=>a có 5 cách và b có 4 cách

=>Có 5+4=20 cách

=>Có 16+20=36(cách)

\(n\left(\Omega\right)=C^2_{100}\)

\(n\left(B\right)=C^2_{36}\)

=>\(P\left(B\right)=\dfrac{7}{55}\)

a: \(y=-x^2+2x+3\)

y>0

=>\(-x^2+2x+3>0\)

=>\(x^2-2x-3< 0\)

=>(x-3)(x+1)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)

=>-1<x<3

\(y=\dfrac{1}{2}x^2+x+4\)

y>0

=>\(\dfrac{1}{2}x^2+x+4>0\)

\(\Leftrightarrow x^2+2x+8>0\)

=>\(x^2+2x+1+7>0\)

=>\(\left(x+1\right)^2+7>0\)(luôn đúng)

b: \(y=-x^2+2x+3< 0\)

=>\(x^2-2x-3>0\)

=>(x-3)(x+1)>0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)

=>x<-1

\(y=\dfrac{1}{2}x^2+x+4\)

\(y< 0\)

=>\(\dfrac{1}{2}x^2+x+4< 0\)

=>\(x^2+2x+8< 0\)

=>(x+1)2+7<0(vô lý)

22 tháng 8

Do \(A\) là tập hợp có \(6\) phần tử nên số tập hợp con khác rỗng và khác \(A\) của tập hợp \(A\) là: \(2^{6} - 2 = 62\) (tập hợp con).

Xét tập hợp \(X\) là tập con bất kì trong \(62\) tập hợp con trên và \(T \left(\right. X \left.\right)\) là tổng các phần tử của \(X\).

Tập hợp \(X\) có nhiều nhất \(5\) phần tử thuộc tập hợp \(\left{\right. 0 ; 1 ; 2 ; . . . ; 14 \left.\right}\) nên ta có:

\(0 \leq T \left(\right. X \left.\right) \leq 10 + 11 + 12 + 13 + 14 = 60\).

Như vậy với \(62\) tập hợp con của \(A\) như trên thì tồn tại \(62\) tổng không vượt quá \(60\).

Theo nguyên lí Dirichlet thì tồn tại hai tổng có giá trị bằng nhau. Điều đó chứng tỏ tồn tại hai tập hợp con \(B_{1}\)\(B_{2}\) của tập hợp \(A\) có tổng các phần tử của chúng bằng nhau.