Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Một số lẻ chữ số 1 và 1 số chẵn chữ số 2" nghĩa là sao nhỉ?
Bạn có thể ghi 1 cách chính xác tuyệt đối đề bài không?
Cách chọn số đầu tiên : 7 cách
Cách chọn số thứ 2: 7 cách
=> Không gian mẫu: \(n\left(\Omega\right)=7.7=49\)
a/ Gọi số chẵn là \(\overline{ab}\)
Xét b=0 => Có 1 cách chọn b và 7 cách chọn a
Xét b= 2;4;6=> có 3 cách chọn b và 6 cách chọn a
=> Có 1.7+3.6=25 (số chẵn)
=> \(n\left(A\right)=25\Rightarrow p\left(A\right)=\dfrac{25}{49}\)
b/ Gọi số chia hết cho 5 có dạng \(\overline{cd}\)
Xét d=0 => Có 1 cách chọn d và 7 cách chọn c
Xét d=5 => Có 1 cách chọn d và 6 cách chọn c
=> Có 1.7+ 1.6=13 (số chia hết cho 5)
\(\Rightarrow n\left(B\right)=13\Rightarrow p\left(B\right)=\dfrac{13}{49}\)
c/ Các số chia hết cho 9 có dạng \(\overline{ef}\)
\(e+f=9\Rightarrow\left(e;f\right)=\left(2;7\right);\left(3;6\right);\left(4;5\right)\)
\(\Rightarrow co:2!.3=6\left(so-chia-het-cho-9\right)\)
\(\Rightarrow n\left(C\right)=6\Rightarrow p\left(C\right)=\dfrac{6}{49}\)
Chọn C
Ta có
Gọi số tự nhiên cần tìm có bốn chữ số là a b c d ¯
Vì a b c d ¯ chia hết cho 11 nên (a + c) - (b + d) ⋮ 11
=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do
Theo đề bài ta cũng có a + b + c + d chia hết cho 11
Mà
hoặc
Vì nên (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ
(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số:
- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2 cách.
- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn d.
Vậy xác suất cần tìm là
Chọn D
Gọi số có 6 chữ số có dạng
Từ 10 chữ số {0;1;2;3;4;5;6;7;8;9}, ta lập được 9. A 9 5 số có 6 chữ số đôi một khác nhau.
Lấy ngẫu nhiên một số từ tập X
Gọi A là biến cố “Lấy một số thuộc X luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ ”.
Ta coi 3 vị trí liền nhau trong X là một phần tử Z, sắp xếp 3 chữ số khác nhau trong Z thỏa mãn biến cố :
+ Số thứ nhất là số lẻ thuộc Y có 3 cách chọn.
+ Số thứ hai là số chẵn thuộc Y có 2 cách chọn.
+ Số thứ ba là số lẻ thuộc Y có 2 cách chọn.
Áp dụng quy tắc nhân ta có 12 cách sắp xếp phần tử .
Trường hợp 1: Số có 6 chữ số có dạng
+) z có 12 cách chọn.
+) Xếp 5 chữ số còn lại khác các số tập Y vào 3 vị trí
Áp dụng quy tắc nhân, ta lập được
Trường hợp2: Số có 6 chữ số có dạng
+) a 1 có 4 cách chọn
+) Xếp z vào 3 vị trí, z có 12 cách chọn nên có 36 cách sắp xếp.
+) Xếp 4chữ số còn lại vào 2 vị trí
Áp dụng quy tắc nhân, ta lập được 4.36. A 4 2 = 1728 số có 6 chữ số đôi một khác nhau thỏa mãn.
Vậy ta có tất cả (số) thoả mãn yêu cầu bài toán.