\(tanx+cotx=m\). Tính \(tan^2x+cot^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

\(tan^2x+cot^2x=\left(tanx+cotx\right)^2-2.tanx.cotx=m^2-2\)

22 tháng 3 2020

Bằng \(\frac{1}{3}\).\(m^2\)

NV
28 tháng 11 2019

\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)

\(\Rightarrow tan^2x+cot^2x=11\)

\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)

\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)

\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)

\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)

NV
5 tháng 5 2020

\(E=\frac{\frac{1}{sin^2x}}{1-\frac{cosx}{sinx}+\frac{cos^2x}{sin^2x}}=\frac{1+cot^2x}{1-cotx+cot^2x}=\frac{1+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{4}}=...\)

\(A=tan^2x+cot^2x=\left(tanx+cotx\right)^2-2=4-2=2\)

\(B=\left(tanx+cotx\right)^3-3tanx.cotx\left(tanx+cotx\right)=2^3-3.1.2=2\)

NV
4 tháng 11 2019

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

NV
31 tháng 5 2020

\(\left(tanx+cotx\right)^2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x+2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x=m^2-2\)

\(\Rightarrow\left(tan^2x+cot^2x\right)^2=\left(m^2-2\right)^2\)

\(\Leftrightarrow tan^4x+cot^4x+2=m^4-4m^2+4\)

\(\Leftrightarrow tan^4x+cot^4x=m^4-4m^2+2\)

\(\Rightarrow a+b+c+d+e=1+0-4+0+2=-1\)

Bài 1 : Chứng minh rằng a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\) b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\) Bài 2 : Chứng minh các biểu thức sau độc lập với biến x A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\) B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\) Bài 3 : Tính giá trị các biểu thức lượng giác A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2 B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6 Bài 4 : Tính...
Đọc tiếp

Bài 1 : Chứng minh rằng

a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)

b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)

Bài 2 : Chứng minh các biểu thức sau độc lập với biến x

A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)

B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)

Bài 3 : Tính giá trị các biểu thức lượng giác

A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2

B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6

Bài 4 : Tính giá trị các biểu thức lượng giác

A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)

B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)

Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :

a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)

b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)

7
4 tháng 5 2020

cos đó bạn

AH
Akai Haruma
Giáo viên
4 tháng 5 2020

Lời giải:

a)

\(\cos 2a=\frac{2}{5}\Rightarrow \sin ^22a=1-(\cos 2a)^2=1-(\frac{2}{5})^2=\frac{21}{25}\)

Vì $a\in (0; \frac{\pi}{4})\Rightarrow 2a\in (0; \frac{\pi}{2})$

$\Rightarrow \sin 2a>0\Rightarrow \sin 2a=\frac{\sqrt{21}}{5}$

$\tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{\sqrt{21}}{5.\frac{2}{5}}=\frac{\sqrt{21}}{2}$

$\cot 2a=\frac{1}{\tan 2a}=\frac{2}{\sqrt{21}}$

-------------------------

$\sin 2a=\frac{24}{25}\Rightarrow \cos ^22a=1-(\sin 2a)^2=\frac{49}{625}$

$a\in [\frac{-3}{4}\pi; \frac{-\pi}{2}]\Rightarrow 2a\in [\frac{-3}{2}\pi ; -\pi]\Rightarrow \cos 2a< 0$

$\Rightarrow \cos 2a=\frac{-7}{25}$

$\Rightarrow \tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{24}{25.\frac{-7}{25}}=\frac{-24}{7}$

$\Rightarrow \cot 2a=\frac{-7}{24}$

NV
11 tháng 4 2019

\(\frac{sin^2a+1}{2.cos^2a}+\frac{1+cos^2a}{2.sin^2a}+1=\frac{tan^2a}{2}+\frac{1}{2cos^2a}+\frac{cot^2a}{2}+\frac{1}{2sin^2a}+1\)

\(=\frac{1}{2}\left(tan^2a+1+tan^2a+cot^2a+1+cot^2a+2\right)\)

\(=\frac{1}{2}\left(2tan^2a+4+2cot^2a\right)=tan^2a+2+cot^2a=\left(tana+cota\right)^2\)

B.

\(\frac{1-4sin^2a.cos^2a}{4sin^2a.cos^2a}=\frac{\frac{1}{cos^4a}-\frac{4sin^2a}{cos^2a}}{\frac{4sin^2a}{cos^2a}}=\frac{\left(\frac{1}{cos^2a}\right)^2-4tan^2a}{4tan^2a}=\frac{\left(1+tan^2a\right)^2-4tan^2a}{4tan^2a}\)

\(=\frac{tan^4a-2tan^2a+1}{4tan^2a}\)

C.

\(\frac{sina+tana}{tana}=\frac{sina}{tana}+1=1+sina.\frac{cosa}{sina}=1+cosa\)

D.

\(tana+\frac{cosa}{1+sina}=\frac{sina}{cosa}+\frac{cosa\left(1-sina\right)}{1-sin^2a}=\frac{sina.cosa}{cos^2a}+\frac{cosa-cosa.sina}{cos^2a}\)

\(=\frac{sina.cosa+cosa-sina.cosa}{cos^2a}=\frac{cosa}{cos^2a}=\frac{1}{cosa}\)

Câu C sai