K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2022

db

 

 

3 tháng 5 2019

A B C H D K

a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:

       \(BC^2=AB^2+AC^2\)

       \(BC^2=5^2+12^2\)

       \(BC^2=25+144\)

       \(BC^2=169\) 

        \(BC=13\)

Vậy cạnh BC = 13cm

b)Xét tam giác AHD và tam giác AKD ta có:

      \(\widehat{AHD}=\widehat{AKD}=90^o\)

       AD chung

       \(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)

=> tam giác AHD = tam giác AKD (g.c.g)

     

3 tháng 5 2019

Bạn có thể làm ý d được ko ạ

a: Xet ΔAHD vuông tại H và ΔAKD vuông tại K co

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

b: góc BAD+góc CAD=90 độ

góc BDA+góc DAH=90 độ

góc CAD=góc DAH

=>góc BAD=góc BDA
=>ΔBAD cân tại B

8 tháng 1 2019

a có: AH  vuông góc BC suy ra  hình tam giác AHC vuông tại H, hình tam giác AHB vuông tại H

                          => \widehat{C}+\widehat{HAC}=90^o ; \widehat{ABH}+\widehat{BAH}=90^o                          Có: AI là phân giác \widehat{BAH}nên \widehat{IAH}\widehat{IAB}=\frac{1}{2}\widehat{BAH}=\widehat{C}

[ vì theo giả thiết có \widehat{BAH}=2\widehat{C}BAH=2C]

                           Suy ra \widehat{IAH}+\widehat{HAC}=90^o                            =>\widehat{IAC}=90^o hay \widehat{IAE}=90^o=>\Delta IAE=>ΔIAEvuông tại A [1]

                               Lại có \widehat{AIE}=\widehat{IAB}+\widehat{IBA}A[góc ngoài tại đỉnh I của \Delta ABIΔABI]

                                Mà BE là phân giác \widehat{ABH}\Rightarrow\widehat{IBA}=\frac{1}{2}\widehat{ABH}ABH

                                Suy ra:  \widehat{AIE}=\frac{1}{2}\left[\widehat{BAH}+\widehat{ABH}\right]=\frac{1}{2}.90^o=45^oA[2]

                               Từ 1 và 2 suy ra \Delta AIE vuông cân tại A

                               Suy ra AE là phân giác ngoài của \Delta ABH tại A,BE là phân giác trong tại B của \Delta ABH

                                => HE là phân giác ngoài tại H của \Delta BAH

                                => HE là phân giác \widehat{AHC}

                                  Vậy ta có điều phải chứng minh

9 tháng 8 2020

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

9 tháng 8 2020

học tốtimage

8 tháng 5 2016

a)  Vì BA = BD => tam giác BAD cân tại B => góc BDA = góc DAB

b) Trong tam giác vuông ADH có: góc BDA + DAH = 90o

Mà góc CAD + DAB = CAB = 90o

=> góc BDA + DAH = góc CAD + DAB  mà góc BDA = góc DAB 

=> góc DAH = CAD => AD là phân giác của HAC

c) Xét tam giác vuông AKD và AHD có: Chung cạnh huyền AD; góc DAH = DAK

=> tam giác AKD = AHD ( cạnh huyền - góc nhọn)

=> AK = AH ( 2 cạnh tương ứng)

dCó DC > KC (tam giác KDC vuông, DC là cạnh huyền) 
=> DC + BD+ AK > KC + BD + AK 
=> BC +AK > AC + BD 
=> AB + AC < BC + AH (vì AK=AH, AB = AD) 

A B C H D

8 tháng 5 2016

A B D H C

a.xét tgiac ABD có AB=BD(gt)

nên theo định nghĩa ta có tgiac ABD cân tại B nên => góc BAD=góc BDA

8 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

BA = BD (gt)

=> Tam giác BAD cân tại B

=> BAD = BDA

b.

Tam giác HAD vuông tại H có: HAD + BDA = 90

Ta có: KAD + BAD = 90 (2 góc phụ nhau)

mà BAD = BDA (theo câu a)

=> HAD = KAD

=> AD là tia phân giác của HAK

c.

Xét tam giác HAD vuông tại H và tam giác KAD vuông tại K có:

HAD = KAD (AD là tia phân giác của HAK)

AD là cạnh chung

=> Tam giác HAD = Tam giác KAD (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Chúc bạn học tốtok