Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: M là trung điểm của BC (gt)
⇒BM=MC
Xét ΔABM và ΔACM , có:
AB=AC (gt)
BM=BC (cmt)
AM là cạnh chung
⇒ΔABM=ΔACM (c.c.c)
⇒ BMA=CMA (2 góc t/ưg)
Hay BMD=CMD (D∈AM)
Xét ΔBMD vàΔCMD , có:
BM=CM (cmt)
BMD=CMD (cmt)
DM là cạnh chung
⇒ΔBMD=ΔCMD (c.g.c)
⇒BD=DC (2 cạnh t/ưg)
![](https://rs.olm.vn/images/avt/0.png?1311)
\Tk
a) Xét ΔABM và ΔACM có:
AC=AB(gt)
AM là cạnh chung
MC=MB(M là trung điểm BC)
=>ΔABM=ΔACM(c.c.c)
b) Vì ΔABM=ΔACM
=>^AMC=^AMB(hai góc tương ứng)
Xét ΔDMC và ΔDMB có:
MC=MB
^DMC=^DMB
DM là cạnh chung
=>ΔDMC=ΔDMB(c.g.c)
=>DB=DC(hai cạnh tương ứng)
c)Ta thấy ^CMI và ^DMB là hai góc đối đỉnh
=>^CMI=^DMB
Mà ^DMC=^DMB
=>^CMI=^DMC
Xét ΔCMI và ΔCMD có:
MI=MD(M là trung điểm của DI)
^CMI=^DMC
MC:cạnh chung
=>ΔCMI=ΔCMD(c.g.c)
=>^DCM=^MCI(hai góc tương ứng)
=>CM là pg ^DCI
=>CB là pg ^DCI
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình hình này vẽ ko khó đâu.
a) Xét ΔABM và ΔACM có:
AC=AB(gt)
AM là cạnh chung
MC=MB(M là trung điểm BC)
=>ΔABM=ΔACM(c.c.c)
b) Vì ΔABM=ΔACM
=>^AMC=^AMB(hai góc tương ứng)
Xét ΔDMC và ΔDMB có:
MC=MB
^DMC=^DMB
DM là cạnh chung
=>ΔDMC=ΔDMB(c.g.c)
=>DB=DC(hai cạnh tương ứng)
c)Ta thấy ^CMI và ^DMB là hai góc đối đỉnh
=>^CMI=^DMB
Mà ^DMC=^DMB
=>^CMI=^DMC
Xét ΔCMI và ΔCMD có:
MI=MD(M là trung điểm của DI)
^CMI=^DMC
MC:cạnh chung
=>ΔCMI=ΔCMD(c.g.c)
=>^DCM=^MCI(hai góc tương ứng)
=>CM là pg ^DCI
=>CB là pa ^DCI
Câu này bác nào có cách ≠ thì cho cháu bt nhé
Có thêm cách làm khác cho câu c.
Từ bài làm câu a, b em suy ra được. DI vuông BC
Xét tam giác DCI có: CI là đường cao đồng thời là đường trung tuyến ( I là trung điểm DC)
=> Tam giác DIC cân => CI cũng là đường phân giác ^DCI => CB là đường phân giác ^DCB
( Tuy nhiên cô ko biết tính chất trên em đã được học hay chưa. Làm theo cách của em đã ổn rồi _ Gửi Linh )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác ABM và tam giác ACM có:
AB=AC(gt)
AM là cạnh chung
BM=CM(gt)
Vậy tam giác ABM=tam giác ACM
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b; SỬa đề; CM DB=DC
Xét ΔDMB vuông tại M và ΔDMC vuông tại M có
DM chung
MB=MC
Do đó: ΔDMB=ΔDMC
=>DB=DC
c: Xét tứ giác BDCI có
M là trung điểm chung của BC và DI
DB=DC
Do đo; BDCI là hình thoi
=>CB là phân giác của góc DCI
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải
a) vì m la trung diểm của BC => BM=MC
Xét tam giac BAM va tam giac MAC có:
AB=AC(dề bài cho)
BM=MC(Chung minh tren)
AM la cạnh chung(de bai cho)
=>Tam giác BAM=tam giac MAC(c.c.c)
b)từ trên
=>góc BAM=góc MAC(hai goc tuong ung)
Tia AM nam giua goc BAC (1)
goc BAM=goc MAC(2)
từ (1) va (2)
=>AM la tia phan giac cua goc BAC
c)Còn nữa ......-->
![](https://rs.olm.vn/images/avt/0.png?1311)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng