Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AD + DB = AB; AE + EC = AC mà AB = AC; AD = AE => DB = EC
Ta có: \(\Delta\)EDC và \(\Delta\)DCB có:
DC: cạnh chung
DB = EC (cmt)
B = C (gt)
=> \(\Delta\)EDC = \(\Delta\)DCB (c.g.c)
=> EDC = DCB (2 góc tương ứng)
EDC và DCB là 2 góc ở vị trí so le trong => DE // BC
Bài 1:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó:ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
a)
Xét tam giác ADC và tam giác AEB có :
AD = AE (GT)
Góc A chung
AC = AB ( vì tam giác ABC cân )
từ 3 điều trên => tam giác ADC = tam giác AEB (c-g-c )
=> DC= BE ( cặp cạnh tương ứng )
b) vì tam giác ADC = tan giác AEB ( câu a )
=> góc ABE = góc ACD ( cặp góc tương ứng )
ta có : tam giác ABC cân => AB = AC (1)
và AD = AE (GT ) (2)
từ (1) và (2) => BD = CE
Xét tam giác KBD và tam giác KCE Có :
góc DKB = góc EKC ( 2 góc đối đỉnh )
BD = CE ( chứng minh trên )
Góc DKB = góc EKC ( đối đỉnh )
từ 3 điều trên => tam giác KBD = tam giác KCE ( g-c-g )
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)
b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)
=> đpcm
A D E B C
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}\)là góc chung
\(AD=DE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )
b) Đề sai, điểm M đâu???
c) Ta có: \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Lại có: \(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
\(\Rightarrow DE//BC\left(đpcm\right)\)
Bài 1:
A B C E 50
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
A B C D E
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
x A B C m 1
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC