K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

=>AM=AD

Xét ΔAMD có AM=AD
nên ΔAMD cân tại A

mà AB là đường cao

nên AB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE

mà AC là đường cao

nên AC là tia phân giác của góc MAE(2)

Ta có: AM=AD

AM=AE

Do đó: AD=AE

b: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

nên E,A,D thẳng hàng

25 tháng 7 2016

Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .

Áp suất

Áp suất

26 tháng 7 2016

lỗi j thế bà

4 tháng 8 2017

A B C M D E

Nối A vs M

a) ta có: M đối xưng vs D qua AB=> AB là đg trung trực của DM =>AD=AM(ĐL)   (1)

Do M đx vs E qua AC nên AC là đg trung trực của ME=>AE=AM  (2)

từ (1),(2) => AD=AE

b)ta có : DAB = BAM (vì AB là đg tt của DM)  =>DAB+BAM=2. BAM   (3)

 mặt khác: EAC=CAM(vì AC là đg tt của EM)=>EAC+CAM=2.CAM     (4)

từ (3),(4)=>DAB+BAM+MAC+CAE=2(BAM+CAM)=2.90=180 (vì BAM+CAM=BAC=90)

=>3 điểm D,A,E thẳng hàng

a: Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

=>AM=AD

=>ΔAMD cân tại A

mà AB là đường cao

nên AB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE
=>ΔAME cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc MAE(2)

Ta có: AD=AM

AE=AM

Do đó: AE=AD

b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ

=>góc AED=(180-140)/2=20 độ

2 tháng 10 2019

Chúc bạn học tốt!

Câu 1: 

Xét ΔEAB và ΔDAC có 

AE=AD

\(\widehat{EAB}=\widehat{DAC}\)

AB=AC

Do đó: ΔEAB=ΔDAC

Suy ra: EB=DC và \(\widehat{EBA}=\widehat{DCA}\)

=>\(\widehat{EBC}=\widehat{DCB}\)

Xét ΔEBM và ΔDCM có 

EB=DC

\(\widehat{EBM}=\widehat{DCM}\)

MB=MC

Do đó: ΔEBM=ΔDCM

Suy ra: ME=MD

mà AE=AD
nên AM là đường trung trực của ED

=>E đối xứng với D qua AM

a: ta có: M và D đối xứng nhau qua BA

nên AB là đường trung trực của MD

=>AM=AD

=>ΔAMD cân tại A

mà AB là đường cao

nênAB là phân giác của góc MAD(1)

Ta có: M và E đối xứng nhau qua AC

nên AC là đường trung trực của ME

=>AM=AE

=>ΔAME cân tại A

mà AC là đường cao

nên AC là phân giác của góc MAE(2)

Ta có: AD=AM

AE=AM

Do đó: AE=AD

b: Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAM}+\widehat{DAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

hay E,A,D thẳng hàng