K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .a) So sánh AC và MC b) Chứng minh tam giác MBC là tam giác tùc) Chứng minh AC <MC <BCBài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .a) So sánh MN và MP b) Chứng minh tam giác MPQlà tam giác tù.c) Chứng minh MN<MP<MQBài 4: Cho tam giác ABC có AB=3 cm, AC=4 cma) So sánh góc B với gócCb) Hạ AH vuông góc với BC tại H . So sánh góc...
Đọc tiếp

Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC 
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP 
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE 
b) So sánh góc ABE  và góc CBE

0
15 tháng 12 2019

A)


A B C E D

XÉT \(\Delta ABE\)\(\Delta ADE\)

\(AB=AD\left(gt\right)\)

\(\widehat{BAE}=\widehat{EAD}\)VÌ AE LÀ PHÂN GIÁC CỦA ABC

AE LÀ CẠNH CHUNG

\(\Rightarrow\Delta ABE=\Delta ADE\left(C-G-C\right)\)

24 tháng 4 2019

Sửa: câu a) c/m tam giác abd= tam giác aed

25 tháng 2 2018

a, Xét \(\Delta\)ABD và \(\Delta\)AED có:

AD- chung

AB=AE (gt)
góc BAD = góc DAC (AD là phân giác góc A)

=> hai tam giác bằng nhau (c.g.c) (đpcm)

=> góc ABC = góc AEK (hai góc tương ứng)

b, Xét \(\Delta\)AEK và \(\Delta\)ABC có:

góc A-chung

AB=AE (gt)

góc ABC = góc AEK (c.m.t)

=> hai tam giác bằng nhau (g.c.g)=> AK = AC (cặp cạnh tương ứng) => tam giác AKC cân tại A

c, vì tam giác AKC cân tại A lại có AD là phân giác góc A => AD cũng là đường cao của tam giác => AD vuông góc với KC (đpcm)

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD