![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)
=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)
=> ∠BAD= ∠BCA + ∠DAC
Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC
=> ∠BAD= ∠ADB
=> ΔABD cân tại B
b, Xét ΔABD cân tại B => AB= BD
Xét ΔABC vuông tại A
=> AB²= BH. BC
= (BD- HD). BC
= (AB- 6). 25
= 25 AB- 150
=> AB²- 25AB+ 150= 0
<=> (AB-15)(AB-10)= 0
<=> AB= 15 hoặc AB= 10
Vậy AB= 15cm, hoặc AB= 10 cm
* tự vẽ hình nha !!!
a, có góc BAD =90độ -góc A1; góc BDA=90độ-góc A2
mà góc A1=A2=> góc BAD=góc BDA do đó tam giác BAD cân tại B.
BH.BC=AB^2=>(x-6).25=x^2<=>x^2−25x+150=0⇔x=10 hoặc x=15x=15.
Vậy AB = 10cmAB=10cm hoặc AB = 15cmAB=15cm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
C O B A N M
a) Ta có:
Góc NOC = 180 độ - góc MON - góc MOB
Góc NOC = 180 độ - góc MBO - góc MOB
Góc NOC = góc BMO
Xét tam giác MBO và tam giác OCN
Góc MBO = góc OCN = 60 độ
Góc BMO = góc NOC
=> Tam giác MBO ~ tam giác OCN (g-g)
=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)
b) Do O là trung điểm BC => OC = BO
\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)
\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)
\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)
Xét tam giác OBM và tam giác NOM
Góc OBM = góc NOM = 60 độ
\(\frac{MB}{MO}=\frac{OB}{NO}\)
=> Tam giác OBM ~ tam giác NOM (c-g-c)
=> Góc OMB = góc OMN
=> MO là tia phân giác góc BMN
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk nghĩ tam giác này đồng dạng với tam giác nọ
Mk ko chắc lắm đâu , đấy là suy nghĩ của mk thui
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta MPQ\)và \(\Delta NPQ\), ta có: \(PM=PN\left(gt\right);QM=QM\left(gt\right);\)PQ chung
\(\Rightarrow\Delta MPQ=\Delta NPQ\left(c.c.c\right)\)(đpcm)
b) Xét \(\Delta MPH\) và \(\Delta NPH\), ta có: \(PM=PN\left(gt\right);MH=NH\)(do H là trung điểm của MN); PH chung
\(\Rightarrow\Delta MPH=\Delta NPH\left(c.c.c\right)\)(đpcm)
c) Xét \(\Delta MNP\)có PM = PN (gt) \(\Rightarrow\Delta MNP\)cân tại P
Mà PH là trung tuyến của \(\Delta MNP\)(do H là trung điểm của MN) \(\Rightarrow\)PH là đường cao của \(\Delta MNP\)(tính chất tam giác cân)
\(\Rightarrow PH\perp MN\)(đpcm)
d) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường phân giác trong \(\Delta MNP\)\(\Rightarrow\)đpcm
e) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường trung trực của MN.(1)
Ta có \(QM=QN\left(gt\right)\)\(\Rightarrow\)Q nằm trên đường trung trực của MN (2)
Từ (1) và (2) hiển nhiên ta có P, H, Q thẳng hàng.
xong @@@