Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) xét tam giác MND và tam giác END ta có
MN = EN
góc MND = góc END
ND: cạnh chung
suy ra tam giác MND = tam giác END
suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ
b) ta có tam giác MND = tam giác END suy ra MD = ED
xét tam giác DMK và tam giác DEP ta có
góc KMD = góc PED ( =90độ)
MD = ED
góc MDK = góc EDP( hai góc đối đinh)
suy ra tam giác DMK = tam giác DEP(đpcm)
c)ta có tam giác DMK = tam giác DEP suy ra MK=EP
ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP
xet tam giác KNDvà tam giác PND ta có
NK=NP
KND= PND
ND:cạnh chung
suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP
ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP
suy góc NDK = góc NDP =90độ
suy ra ND vuông góc với KP

Xét △ ABD và △ EBD
có \(\hept{\begin{cases}AB=EB\\\widehat{ABD}=\widehat{EBD}\\BD=DB\end{cases}}\)
\(\Rightarrow\text{△}ABD=\text{△}EBD\)
\(\Rightarrow DA=DE\)
Ta có: △ ABD = △ EBD
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\widehat{BED}=90^0\)
Ta có: \(\widehat{FAD}+\widehat{DAC}=180^0\Rightarrow\widehat{FAD}=180^0-\widehat{DAC}\Rightarrow\widehat{FAD}=90^0\)
Ta có:\(\widehat{DEC}+\widehat{DEB}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{DEB}\Rightarrow\widehat{DEC}=90^0\)
Xét △ FAD và △ CED
có \(\hept{\begin{cases}\widehat{FAD}=\widehat{CED}\\DA=DE\\\widehat{ADF}=\widehat{EDC}\end{cases}}\)
\(\Rightarrow\text{△}FAD=\text{△}CED\)
\(\Rightarrow DC=DF\)

tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..

b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe

a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên BI vừa là đường cao vừa là đường trung tuyến
=>I là trung điểm của AE và BD\(\perp\)AE
=>AI=EI

bạn tự vẽ hình nhé
a. Xét tam giác CDA và tam giác CDE có CA = CE, gócACD = gócECD, CD[cạnh chung ]
=> tam giác CDA =tam giác CDE[c.g.c] => GÓC CAD = GÓC CDE = 90độ
=> DE vuông góc vs BC
b. Theo câu a, tam giác CDA = tam giác CDE
=> AD = ED
Xét tam giác ADM và tam giác EDB có :
GÓC MDA = GÓC EDB [=90ĐỘ]
AD=ED
MDA=BDE[ĐỐI ĐỈNH]
=> tam giác ADM = tam giác EDB [g-c-g]=> MA=BE=> CM=CB
DT : tam giác MEC = tam giác BAC[ch-gn]
=> EM = AB
c.Theo câu a , tam giác CDA =tam giác CDE
=>AD = AE => tam giác ADE cân tại D
=> GÓC DEA =90độ - GÓCADE / 2 [1]
Theo câu b . tg ADM = tgEDB
=> DM=DB=> tg BDM cân tại D => GÓC DMB = 90độ - góc MDB / 2 [2]
GÓC MDB= GÓC ADE [3]
Từ [1] , [2], [3]
=> GÓC AED=GÓC DMB
=> AE//MB
đề sai r bạn ơi...
a, Xét Δ DXY và Δ DEY :
\(\widehat{DYX}\)= \(\widehat{DYE}\)(gt)
YE = YX (gt)
DY là cạnh chung
=> Δ DXY = Δ DEY ( c - g - c )
=> DX = DE ( 2 cạnh tương ứng )
b, Xét Δ ZDE và Δ MDX ta có :
\(\widehat{ZED}\)= \(\widehat{DXM}\)(= 90 độ )
DX = DE ( chứng minh trên )
\(\widehat{MDX}\)=\(\widehat{ZDE}\)( 2 góc đối đỉnh )
=> Δ ZDE = Δ MDX ( g - c - g )
=> EZ = DM ( 2 cạnh tương ứng )