Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\widehat{ABC}=\widehat{HAC}\) do cùng phụ với góc BAH )
suy ra: \(\Delta ABC~\Delta HAC\)
b) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Áp dụng hệ thức lượng ta có:
\(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm
\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm
\(BH=BC-HC=10-6,4=3,6\)cm
câu 2:
a)xét tg HBA và ABC có
góc AHB=BAC=900
góc B chung
=>tg HBA đồng dạng vs tg ABC(g-g)
b) áp dụng pytago vào tg ABC có
BC2=AB2+AC2
=>BC2=62+82
=>BC2=36+64
=>BC=\(\sqrt{100}=10cm\)
xét tam giác HBA đd vs tg ABC có
\(\frac{BA}{BC}=\frac{HA}{AC}\Rightarrow\frac{6}{10}=\frac{HA}{8}\Rightarrow HA=\frac{6.8}{10}\)
\(\Rightarrow HA=4,8\)
c) theo tính chất đường phân giác, ta có
\(\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{DC}=\frac{6}{8}\Rightarrow\frac{BD}{BD+DC}=\frac{6}{8+6}\)
\(\Rightarrow\frac{BD}{BC}=\frac{6}{14}\)\(\Rightarrow\frac{BD}{10}=\frac{6}{14}\Rightarrow BD=\frac{6.10}{14}\approx4.3\)
A B C E F H I
E;F lần lượt là tủng điểm của AB; AC (gt)
=> EF là đường trung bình của tam giác ABC (đn)
=> EF = 1/2BC (đl)
=> BC = EF.2
mà EF = 5 cm (gT)
=> BC = 5.2 = 10 (cm)
b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn) (1)
=> HE là trung tuyến của tam giác vuông AHB (đn)
=> HE = 1/2 AB (đl) (2)
(1)(2) => AE = HE
=> E thuộc đường trung trực của AH (Đl) (3)
làm tương tự với F trong tam giác AHC
=> F thuộc đường trung trực của AH (Đl) (4)
(3)(4) => EF là đường trung trực của AH (đl)
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a,Xét tam giác ABC và tam giác HBA có :
Góc ABC chung
Góc BAC = góc BHA (=90 độ )
=> ABC đồng dạng HBA
Áp dụng định lý Pytago có BC2=AC2 +AB2 => BC =20
ABC ~ HBA => AC/AH = BC/AB => AH = ACxAB:BC = 9,6
b,Xét tam giác BHA có BM là phân giác => MH:MA=BH:BA(tính chất đường phân giác) (1)
Tương tự,BD là phân giác của BAC => DA:DC=AB:BC. (2)
Mặt khác ,ABC~HBA =>AB:BC= BH:BA (3)
Từ (1) , (2), (3) => MH:MA=DA:DC
c,Gọi E là trung điểm của AC => AE = AC:2 = 8(cm)
Ta có: E là trung điểm AC,NE // AK ( Cùng vuông góc với AC)
=> EN là đường trung bình của tam giác AKC => N là trung điểm CK => AN là đường trung tuyến ứng với cạnh huyền => AN = CK:2.
Mặ khác,Xét AEN và BCA có:
NAE = ABC ( cùng phụ BAH)
AEN = BAC ( =90 độ )
=> AEN ~ BCA (g.g) => AE : AB =AN : BC => 8: 12 = AN : 20 => AN = 40/3
CK = 2x AN =>CK = 40:3x2=20/3
A B C H K I E F
Xét \(\Delta BAC\) Và \(\Delta ACH\) có :
\(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )
\(\widehat{C}\)là góc chung
\(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g ) (1)
\(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)
b) Xét \(\Delta AHC\)có :
K là trung điểm của CH
I là trung điểm của AH
\(\Rightarrow\)IK // AC
Do IK // AC :
\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)
Từ (1) và (2) =) \(\Delta HIK\)\(~\)\(\Delta ABC\)
Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900
\(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900
Xét tứ giác AEHF có:
\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF
Xét \(\Delta ABC\)\(\perp\)tại \(A\)
Áp dụng định lí py - ta - go
BC2 = AB2 + AC2
52 = 32 + AC2
AC2 = 16
AC = 4 ( cm )
Ta có ; \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2
\(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)
\(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm
Xét \(\Delta AHC\)\(\perp\)tại A
Áp dụng định lí py - ta - go
AC2 = AH2 + HC2
42 = (2,4)2 + CH2
CH2 = 10,24
CH = 3,2 cm
Ta có : \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2
\(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)
\(\Rightarrow\)2.HF = 3.84
HF = 1.92 cm
\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)
a, Xét tg ABC và tg ABH:
H=B=90
 góc chung
=> tg ABC đồng dạng tg ABH
b, Vì tg ABC đồng dạng với tg ABH.
Nên: AB/AH=AC/AB
=>AB^2=AH.AC
=>AB^2=4.13
=>AB=7,2cm
c, Hình như đề sai.
ủa lớp 8 có hệ thức :v bác pro vại :vv
5cm A B C H 7cm
A/ Xét tam giác ABC áp dụng định lí Pitago :
\(AB^2+AC^2=BC^2\)
\(5^2+7^2=BC^2\)
\(25+49=74=BC^2\)
\(\Rightarrow BC=\sqrt{74}\)(cm)
B/ Xét tam giác ABC áp dụng hệ thức về cạnh và đường cao trong tam giác vuông:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)(định lí 4)
\(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{7^2}\)
\(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{49}=\frac{74}{1225}\)
\(\Rightarrow AH^2=\frac{1225}{74}\)
\(\Rightarrow AH=4,068\)(cm)
BạnNhỏ5Tuổi: lớp 8 đã được học hệ thức đâu a.
\(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{BC.AH}{2}\)
\(\Leftrightarrow AB.AC=BC.AH\)
\(\Leftrightarrow5.7=\sqrt{74}AH\)
<=> AH=4,068( cm)