Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
BD:cạnh chung; góc ABD= góc EBD(gt)
Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)
=> AB=EB; AD=ED(cặp cạnh tương ứng)
Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE(đpcm)
b, Xét tam giác ADF và tam giác EDC ta có:
góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)
Do đó tam giác ADF=tam giác EDC(g.c.g)
=> DF=DC(cặp cạnh tương ứng) (đpcm)
c, Xét tam giác DEC vuông tại E ta có:
DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)
mà DE=DA=> DA<DC(đpcm)
d, Vì tam giác ADF=tam giác EDC(cm câu b)
=> AF=EC(cặp cạnh tương ứng)
Ta có: BF=BA+AF; BC=BE+EC
mà BA=BE;AF=EC(đã cm)
=> BF=BC
=> tam giác BCF cân tại B
mặc khác ta có: BA=BE(cm câu a)
=> tam giác ABE cân tại B
Xét tam giác BCF và tam giác ABE cân tại B ta có:
góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)
=> góc BAE=góc BFC
=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)
A B C D E F
Ta có tan giác BAD=tam giác BED(ch-gn)
=>BA=BE (tương ứng)
Vậy B cach đều hai đều mút của đoạn thẳng AE
=>BD là trung trực của AE
b)Từ a có tam giác BAD=BED
=>AD=DE(tương ứng)
Vậy ta có tam giác ADF=EDC (cgv-gnk)
=>DC=DF(tương ứng)
c) trong tam giac vuông ADF có AD< DF(vì FD là cạnh huyền và là cạnh lớn nhất trong tam giác vuông)
Mà theo câu b ta có DF=DC
NÊN => AD<DC
=>
a)xét tam giác ABD và tam giác EBD,ta có:
góc DEB= góc DAB(=90 độ)
góc EBD=ABD(BD là p/g)
BD chung
Vậy tam giác ABD=tam giác EBD(CẠNH HUYỀN CẠNH GÓC NHỌN)
=>AD=EB
b)xét tam giác ADF và ECD,ta có:
góc CED=FAD(= 90 độ)
DE=DA(cmt)
góc CDE=FDA(đối đỉnh)
=>tam giác ADF=ECD(g.c.g)
=>DF=DC(...)
c)xét tam giácvuông ADF ta có
FD là cạnh huyền
=>AD<FD
có FD=CD(cmt)
=>AD<DC
CHÚC BẠN HỌC TỐT!
Bài này không khó, cần thì mình giải cho bạn nhưng mà phần b bạn sai đề
BAEDFC
a) Ta xét t/g ABD vuông tại a và kẻ DE vuông góc với BC có:
=>BD sẽ là cạnh chung
=>ADB=BDE (BD là tia phân giác của ABE)
=>T/gABD=t/gEDB (cạnh huyền-góc nhọn)
=>AB=EB (2 cạnh tương ứng)
=>B thuộc đường trung trực của AE
=>AD=ED (2 cạnh tương ứng)
=>D thuộc đường trung trực của AE
=>BD là đường trung trực của AE
b) Xét t/g AFD và t/gECD ta có:
=>FAD=CED=90o
=>AD=ED(t/gABD=t/gEDB)
=>ADF=EDC (2 góc đối đỉnh)
=>T/gDAF=t/gEDC (c.g.c)
=>DF=DC ( 2 cạnh tương ứng)
c)
Vì t/gADF vuông tại A nên ta có:
AD<FD (quan hệ giữa các cạnh góc đối diện nhau trong 1 t/g vuông)
=>FD=CD
=>AD<DC
=> (đpcm).
Mã Tùng Lâm
d, ta có BA + AF = BF
BE + EC = BC
mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2 (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2 (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC
a xét 2 tg vuông ABD và EBD có
góc A1 = góc E1
góc B1 = góc B2
BD cạnh chung
=> tg ABD= tg EBD
=> BA = BE
=> tg ABE cân
ta có trong tg cân đg phân giác hạ từ đỉnh xuống cạnh đối diện cũng là đg trug trực của tg
hay bd là đg trug trực của ae
b, xét 2 tg vuông ADF và EDC có
góc A2 = góc E2
AD = BE ( tg ABD = tg EBD )
góc D1 = góc D2 ( đối đỉnh )
=> tg ADF = tg EDC
=> DF = DC
cta có tg EDC có DC > DE ( ch > cgv )
mà AD = ED
=> AD < DC
d, ta có BA + AF = BF
BE + EC = BC
mà BA = BE
AF = EC ( tg ADF = tg EDF )
=> BF = BC
=> tg BFC cân
=> góc F = ( 180 độ - góc B ) /2 (1)
vì AB = EB => tam giác ABE cân
=> góc BAE = ( 180 độ - góc B ) /2 (2)
từ (1) và (2) => góc F = góc BAE
mà 2 góc này đồng vị
=> AE // FC
a_ cm tam giac ABD= tam giac BED ( ch-gn)--> BE=BA va AD=DE-> Bva D nam tren duong trung truc cua AE-> BD la duong trung truc AE
b_ cm tam giac DFA= tam giac DCE (g-c-g) DA=DE, Goc DAF= goc DEC (=90), ADF=EDC ( doi dinh)-> DF=DC
c_tu diem D den duong thang EC ta co
DE la duong vuong goc, DC la duong xien --> DE<DC ( quan he duong xien duong vuong goc)
ma DE=DA ( tam giac ABD= tam giacBED)
nen DA<DC
d) tu diem B den duong thang EF ta co :
BE la duong vuong goc , BF la duong xien--> BE<BF ( quan he duong xien duong vuong goc)
tu diem C den duong thang EF ta co
CE la duong vuong goc, CF la duong xien -> EC< CF (quan he duong xien duong vuong goc)
--> BE+EC < BF+CF
---> BC < BF+CF
ma BD+DC < BC ( bdt trong tam giac BDC )
nen BD+DC < BF+CF