K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

 Do tam giác ABC là tam giác vuông nên theo định lý Pytago có: BC^2=AB^2+AC^2(1). Mà theo gt 4AB=3AC=>AC=4AB/3 (2). Thay vao (1), ta co BC^2=AB^2+(4AB/3)^2<=>20^2=(25(AB^2))/9 <=> AB=12. Thay AB vao (2) =>AC=16.

28 tháng 1 2016

cho mình hỏi, 25 trong cái vế bạn thay vào ở đâu z

16 tháng 1 2018

\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)

\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)

\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)

26 tháng 1 2022

bạn vẽ hình được ko

 

15 tháng 1 2018

\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)

\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)

\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)

23 tháng 4 2018

bn ST 400 ở đâu ra vậy bn

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:

BC2=AB2+CA2

<=>400=AB2+CA2

Theo giả thiết: 4AB=3AC

=>AB3=AC4AB3=AC4

=>AB29=AC216AB29=AC216

Theo tính chất dãy tỉ số bằng nhau,ta có:

AB29=AC216=AB2+AC29+16=BC225=40025=16AB29=AC216=AB2+AC29+16=BC225=40025=16

Với AB29=16=>AB=12AB29=16=>AB=12

Với AC216=16=>AC=16AC216=16=>AC=16

Vậy AB=12cm

AC=16cm

13 tháng 3 2020

🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn

11 tháng 4 2016

Vay 40% so tien bao la 2000 dong

Vậy số tiền bao la: 2000:40x100=5000 dong 

nha ban

20 tháng 1 2022

a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)

b, Ta có : BH + CH = BC = 25 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=15cm\)

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=12cm\)

3 tháng 3 2018

Tam giác ABC vuông tại A suy ra: \(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+AC^2=400\)

Vì: \(4AB=3AC\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=L>0\left(đặt\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=9L^2\\AC^2=16L^2\end{matrix}\right.\)

\(\Rightarrow400=25L^2\Leftrightarrow L^2=16\Leftrightarrow L=4\left(L>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=12\\AC=16\end{matrix}\right.\)