Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`
Theo đề: `(AB)/(AC)=3/4=(3x)/(4x) (x >0)`
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>125^2=9x^2+16x^2`
`=>x=25`
`=> AB=75 ; AC=100`
Có: `AB^2=BH.BC=>BH=45`
`=>CH=BC-BH=80`.
Tỉ số độ hai cạnh góc vuông là 5/6
=>Tỉ số giữa hai hình chiếu tương ứng của hai cạnh góc vuông trên cạnh huyền là (5/6)^2=25/36
Độ dài hình chiếu thứ nhất là:
122*25/61=50(cm)
Độ dài hình chiếu thứ hai là:
122-50=72(cm)
Lời giải:
Gọi độ dài 2 cạnh góc vuông của tam giác là $5a$ và $6a$ (với $a>0$)
Áp dụng định lý Pitago:
$(5a)^2+(6a)^2=122^2$
$\Leftrightarrow 61a^2=14884$
$\Rightarrow a^2=244$
Độ dài hình chiếu gọi là $d$. Theo hệ thức lượng trong tam giác:
$\frac{1}{d^2}=\frac{1}{(5a)^2}+\frac{1}{(6a)^2}$
$=\frac{61}{900a^2}=\frac{61}{900.244}=\frac{1}{3600}$
$\Rightarrow d^2=3600=60^2$
$\Rightarrow d=60$ (cm)
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)
nên \(AB=\dfrac{5}{12}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\dfrac{25}{144}AC^2+AC^2=26^2\)
\(\Leftrightarrow\dfrac{169}{144}AC^2=676\)
\(\Leftrightarrow AC^2=576\)
hay AC=24(cm)
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)(gt)
nên \(AB=\dfrac{5}{12}\cdot AC=\dfrac{5}{12}\cdot24=10\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot26=240\)
hay \(AH=\dfrac{120}{13}\left(cm\right)\)
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)
A B H C (P/s:Hình ảnh mang tính chất minh họa)
Giả sử \(\Delta ABC\)có: \(\widehat{CAB}=90^o;AH\perp BC;BC=26;\frac{AB}{AC}=\frac{5}{12}\)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{AB^2+AC^2}{169}\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=26^2=676\)
\(\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{676}{169}=4\)
\(\Rightarrow\frac{AB^2}{25}=4\Rightarrow AB^2=4\cdot25=100\Rightarrow AB=\sqrt{100}=10\)
\(\frac{AC^2}{144}=4\Rightarrow AC^2=144.4=576\Rightarrow AC=\sqrt{576}=24\)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu ta được:
\(AB^2=BH.BC\Rightarrow BH=\frac{10^2}{26}=\frac{50}{13}\)
\(CH=BC-BH=26-\frac{50}{13}=\frac{288}{13}\)