K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài này vuông tại A

Hình tự vẽ nha khó vẽ quá

Xét 2 tam giác vuông ACD và t/g MCD có:

DC chung 

\(\widehat{MCD}=\widehat{ACD}\)(DC phân giác)

tam giác ACD = t/g MCD (hg-gn)

b,Vì tam giác ACD=t/g MCD 

\(\Rightarrow DA=DM;AC=CD\)

mà C\(\ne D\)

Nên Cd là trung trực của AM

22 tháng 1 2018

C A B D E I H M G K

a) Xét tam giác vuông ECA và EDA có:

Cạnh EA chung

CA = DA (gt)

\(\Rightarrow\Delta ECA=\Delta EDA\)  (Cạnh huyền, cạnh góc vuông)

\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)

Hya AE là phân giác góc CAB.

b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)

Ta có EC = ED; AC = AD nên AE là trung trực của CD.

c) Kẻ CH vuông góc AB.

Ta luôn có D nằm giữa B và H nên HD < HB

Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)

d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.

Vậy G là trọng tâm hay CK cũng có trung tuyến.

 Vậy K là trung điểm BD.

15 tháng 12 2016

A B C M D

a) Xét ΔABD và ΔMCD có:

AD=MD(gt)

\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)

BD=CD(gt)

=> ΔABD=ΔMCD(c.g.c)

b) Đính chính lại đề: CM AB vuông góc vs CM

VÌ: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=>AB//CM

c)Xét ΔBDM và ΔCDA có:

DB=DC(gt)

\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)

DM=AD(gt)

=>ΔBDM=ΔCDA(c.g.c)

=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong

=>AC//BM

16 tháng 12 2016

đọc nhầm đề lm lại từ phần b

b) Vì: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong

=> AB//CM

Mà: \(AB\perp AC\left(gt\right)\)

=> \(AC\perp CM\)

phần c vẫn như ở dưới

22 tháng 2 2017

moi nguoi giai ra bai nay chua nhi 

22 tháng 1 2018

Đề bài này có một số lỗi, cô đã sửa. Em tham khảo trong bài dưới đây nhé.

Câu hỏi của Trần Việt Hà - Toán lớp 7 - Học toán với OnlineMath

5 tháng 5 2016

phải là AD=AC chứ!!!

5 tháng 5 2016

a/ Xét \(\Delta\)ACEvà \(\Delta\)ADE:

AC=AD(gt)

^ACE=^ADE(=90 độ)

AE (chung)

\(\Rightarrow\)\(\Delta\)ACE=\(\Delta\)ADE(cạnh huyền- cạnh góc vuông)

\(\Rightarrow\)^CAE=^DAE(cặp góc tương ứng)

\(\Rightarrow\)AE là phân giác ^CAB(đfcm)