Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
C A B D E I H M G K
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
\(\Rightarrow\Delta ECA=\Delta EDA\) (Cạnh huyền, cạnh góc vuông)
\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D
a) Xét ΔABD và ΔMCD có:
AD=MD(gt)
\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)
BD=CD(gt)
=> ΔABD=ΔMCD(c.g.c)
b) Đính chính lại đề: CM AB vuông góc vs CM
VÌ: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=>AB//CM
c)Xét ΔBDM và ΔCDA có:
DB=DC(gt)
\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)
DM=AD(gt)
=>ΔBDM=ΔCDA(c.g.c)
=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong
=>AC//BM
đọc nhầm đề lm lại từ phần b
b) Vì: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong
=> AB//CM
Mà: \(AB\perp AC\left(gt\right)\)
=> \(AC\perp CM\)
phần c vẫn như ở dưới
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài này có một số lỗi, cô đã sửa. Em tham khảo trong bài dưới đây nhé.
Câu hỏi của Trần Việt Hà - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét \(\Delta\)ACEvà \(\Delta\)ADE:
AC=AD(gt)
^ACE=^ADE(=90 độ)
AE (chung)
\(\Rightarrow\)\(\Delta\)ACE=\(\Delta\)ADE(cạnh huyền- cạnh góc vuông)
\(\Rightarrow\)^CAE=^DAE(cặp góc tương ứng)
\(\Rightarrow\)AE là phân giác ^CAB(đfcm)
Bài này vuông tại A
Hình tự vẽ nha khó vẽ quá
Xét 2 tam giác vuông ACD và t/g MCD có:
DC chung
\(\widehat{MCD}=\widehat{ACD}\)(DC phân giác)
tam giác ACD = t/g MCD (hg-gn)
b,Vì tam giác ACD=t/g MCD
\(\Rightarrow DA=DM;AC=CD\)
mà C\(\ne D\)
Nên Cd là trung trực của AM