K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

a) tg ABD vuong tai A có BD = 2AD (vi góc D=60; C=30)

mà CD=BD ( vì tg CDB cân tại C: có C = B = 30)

VẬY tỷ số AD/CD = BD/CD = 1/2

b) tg ABC = 1/2 TG ĐỀU mà AB=12,5 => BC= 12,5.2 = 25cm

AC = BC\(\sqrt{3}\)/2= 15CĂN3

S= 1/2 . AB.AC = 1/2 , 12,5 . 15căn3 = 93,75\(\sqrt{3}\)cm2

chu vi tg là;  15căn3 + 25+12,5

tôi đã hoàn thành nhiệm vụ, thưa ngài

a) Xét ΔABC vuông tại A có \(\widehat{C}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{C}\)

nên \(\dfrac{AB}{BC}=\dfrac{1}{2}\)(Định lí)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AD}{CD}=\dfrac{1}{2}\)

b) Ta có: \(BC=2\cdot AB\)(cmt)

nên \(BC=2\cdot12.5=25\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=25^2-12.5^2=468.75\)

hay \(AC=\dfrac{25\sqrt{3}}{2}cm\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{12\cdot\dfrac{25\sqrt{3}}{2}}{2}=\dfrac{150\sqrt{3}}{2}=75\sqrt{3}\left(cm^2\right)\)

22 tháng 4 2017
a) Ta có ΔABC vuông tại A và \(\widehat{C}\) = 300
\(\Rightarrow\)AB = 1/2BC ⇒ BC = 2AB
Vì BD là phân giác ⇒ DA/DC = AB/BC = AB/2AB =1/2
b) AB = 12,5 cm \(\Rightarrow\) BC = 25 cm
Áp dụng định lí pitago vào tam giác ABC vuông tại A ta có :
AC2= BC2 – AB2 = 252 – 12,52
AC = 21,65 (cm)
CABC = AB+ BC+ CA =12,5+25+21,65 = 59,15(cm)
SABC = 1/2AB.AC =1/2.12,5.21,65 = 135,31 (cm2)
19 tháng 3 2018

có đúng không bạn

23 tháng 6 2019

a) + Δ ABC vuông tại A, có Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

(Trong một tam giác vuông, cạnh đối diện với góc 30o bằng một nửa cạnh huyền)

+ Δ ABC có BD là phân giác của Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) AB = 12,5cm ⇒ BC = 2AB = 2.12,5 = 25cm

Áp dụng định lí Py- ta- go vào tam giác ABC ta có:

AB2 + AC2 = BC2 nên AC2 = BC2 - AB2

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Chu vi tam giác ABC là:

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Diện tích tam giác ABC là:

Giải bài 60 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bạn giải chi tiết quá, mình hiểu hết trơn😆

24 tháng 4 2017

A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)

=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm

=> DC = \(\frac{80}{7}\)cm.

Kẻ DE vuông góc với AC 

DE vuông góc với AC và AB vuông góc với AC => DE song song với AB 

áp dụng hệ quả của định lý Ta-let,ta có; 

\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm

Diện tích tam giác ACD:  S\(_{ACD}\)\(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)

Diện tích tam giác ABD:  S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)\(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)\(\frac{288}{7}\)cm\(^2\)

Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)

Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm

BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)

Chiều cao AH : S\(_{ABC}\)\(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm

6 tháng 2 2021

Nguyễn Thị Trang- bạn có hình không ạ?

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)