Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài Làm:
1, Ta có: \(A=x^2-x+1\)
\(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
= \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
\(\Rightarrow A\ge\dfrac{3}{4}\forall x\)
Dấu " = " xảy ra khi: \(x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy Min \(A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\).
Chúc pạn hok tốt!!!
2, P tự vẽ hình nha!!!
a, Xét \(\Delta ABD\) và \(\Delta CBF\) có:
\(\widehat{B}\): chung
\(\widehat{ADB}=\widehat{CFB}=90^0\)
\(\Rightarrow\Delta ABD\sim\Delta CBF\)( g.g )
b) Xét \(\Delta AFH\) và \(\Delta CDH\) có:
\(\widehat{AFH}=\widehat{CDH}=90^0\)
\(\widehat{AHF}=\widehat{DHC}\) ( Đối đỉnh )
\(\Rightarrow\Delta AFH\sim\Delta CDH\) ( g.g )
\(\Rightarrow\dfrac{AH}{CH}=\dfrac{FH}{HD}\)
\(\Rightarrow AH.HD=CH.HE\)

a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
.............................................................................
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow5y=4x\)
b/ Ta có:
\(a-b=a^3+b^3>0\)
Ta lại có:
\(a^2+b^2< a^2+b^2+ab\)
Ta chứng minh
\(a^2+b^2+ab< 1\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)
\(\Leftrightarrow a^3-b^3< a^3+b^3\)
\(\Leftrightarrow b^3>0\) (đúng)
Vậy ta có điều phải chứng minh

bài 1
\(K=x^2+x+1=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
vậy min của K là 3/4 tại x=-1/2
bài 2
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0^2=0\)
\(\Rightarrow2+2ab+2ac+2bc=0\Rightarrow2ab+2ac+2bc=-2\Rightarrow ab+ac+bc=-1\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)
\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2=\left(-1\right)^2=1\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=a^4+b^4+c^4+2=2^2=4\)
\(\Rightarrow a^4+b^4+c^4=2\)

1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0

1.
Áp dụng bất đẳng thức Cô-si thôi:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu "=" khi a = b
2.
Vì a,b,c là ba cạnh tam giác nên dễ thấy các mẫu số dương.
Áp dụng câu 1 ta có:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Tương tự:
\(\frac{1}{c+a-b}+\frac{1}{b+c-a}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{b+c-a}+\frac{1}{a+b-c}\ge\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c hay tam giác đó đều.

Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
=>\(\dfrac{BC}{AC}=\dfrac{AB}{AH}\)
=>\(AH\cdot BC=AB\cdot AC\)
b:
Ta có: DH\(\perp\)AB
AC\(\perp\)AB
Do đó: DH//AC
Xét ΔDHA vuông tại D và ΔHAC vuông tại H có
\(\widehat{DHA}=\widehat{HAC}\)(hai góc so le trong, DH//AC)
Do đó: ΔDHA~ΔHAC
=>\(\dfrac{HA}{AC}=\dfrac{DH}{HA}\)
=>\(AH^2=HD\cdot AC\)