K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

Vì M là trung điểm SQ và KH nên SHQK là hbh

Mà SH là đg cao nên \(\widehat{SHQ}=90^0\)

Vậy SHQK là hcn

13 tháng 11 2021

hình nx ạbucminh

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

28 tháng 11 2021

D E F I M K -

a) Vì M trung điểm DF => MD=MF

         K đối xứng với M qua I => KM=MI

=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)

Mà có ^I=90o ( DI là đường cao)

=>    DKFI là hcn ( hbh có 1 góc _|_)

b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ 

=> IK_|_DF => DKFI là hình vuông  (theo dấu hiệu nhận bt)

Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF

=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )

Mà lại có DI là đường cao 

=> \(\Delta\) DEF là \(\Delta\) vuông cân

 Vậy \(\Delta\)DEF cần điều kiện DK_|_KF 

a: Xét ΔCBA có 

H là trung điểm của BC

E là trung điểm của AC

Do đó: HE là đường trung bình của ΔCBA

Suy ra: HE//AB và \(HE=\dfrac{AB}{2}\)

hay HE//AD và HE=AD

Xét tứ giác ADHE có 

HE//AD

HE=AD
Do đó: ADHE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADHE là hcn

a:

Sửa đề: MBKC

Xét ΔBDC có BM/BD=BN/BC

nên MN//CD

Xét tứ giác MBKC có

N là trung điểm chung của MK và BC

=>MBKC là hình bình hành

b: Xét tứ giác AMNH có MN//AH

nên AMNH là hình thang

Xét ΔDBC có DM/DB=DH/DC=1/2

nên MH//BC 

=>MH/BC=DM/DB=1/2

=>MH=1/2BC

ΔABC vuông tại A có AN là trung tuyến

nên AN=1/2BC

=>AN=MH

=>AMNH là hình thang cân

c: MN=1/2DC

DH=1/2DC

=>MN=DH

mà MN//DH

nên MNHD là hình bình hành