Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 bạn tự vẽ hình nha
xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC
==> tam giác ABC đồng dạng với tam giác DBA
==> AB/BC=BD/AB (1)
xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)
xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)
từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )
a, Ta có: ^A + ^B + ^C = 180 ( tổng ba góc trong 1 tam giác)
mà theo gt ^A=90, ^C=30 => ^B = 60
Lại có tam giác ABD cân tại B ( BD=BA theo gt) và ^B = 60 ( theo trên)
=> tam giác ABD đều ( e tự giải thik)
vì tam giác ABD đều => ^BAD=60 => ^DAC=90-60=30
b, vì ^DAC = ^ DCA (=30)
=> tam giác DAC cân tại D(*)
=> AD=DC (1)
vì tam giác ADC cân tại D mà DE là cao ứn vs cạnh AC => DE đồng thời là đường trung tuyến ứng vs cạnh AC => AE = EC(2)
Xét tam giác ADE và tam giác CDE có:
AD=DC( theo 1)
AE=EC (theo 2)
DE chung
=> tam giác ADE= tam giác CDE (c.c.c)
c, vì tam giác ABD đều => AB=BD=AD=5cm
mà tam giác ADC cân tại D ( theo *)=> AD=DC=5cm
=> BC= BD + DC= 5+5=10cm
áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
BC2=AB2+AC2
=> AC2= BC2-AB2
hay AC2= 102-52=75
=> AC \(\sqrt{75}\)\(\approx\)8.66
d, TỰ LÀM
D E A B C
a) Ta có AD = AE nên ∆ADE cân
Do đó =
Trong tam giác ADE có: + + =1800
Hay 2 = 1800 -
=
Tương tự trong tam giác cân ABC ta có =
Nên = là hai góc đồng vị.
Suy ra DE // BC
Do đó BDEC là hình thang.
Lại có =
Nên BDEC là hình thang cân.
b) Với =500
Ta được = = = = 650
=1800 - = 1800 - 650=1150
1)
A B H D c m n
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)
Mog mn zúp vs ạ :3
Đag bí bài này -,-
https://olm.vn/hoi-dap/detail/9955663993.html