K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR

a: ta có: ΔPQR vuông tại P

=>\(QR^2=PQ^2+PR^2\)

=>\(QR^2=8^2+6^2=100\)

=>\(QR=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔRPQ vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)

b: Xét tứ giác PNMK có

\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)

=>PNMK là hình chữ nhật

c: Xét ΔRPQ có

M là trung điểm của RQ

MK//RP

Do đó: K là trung điểm của PQ

=>PK=KQ(1)

Ta có: PKMN là hình chữ nhật

=>PK=MN(2)

Từ (1) và (2) suy ra KQ=MN

Ta có: PK//MN
K\(\in\)PQ

Do đó: NM//KQ

Xét tứ giác KQMN có

KQ//MN

KQ=MN

Do đó: KQMN là hình bình hành

=>QN cắt MK tại trung điểm của mỗi đường

mà O là trung điểm của MK

nên O là trung điểm của QN

=>OQ=ON

Xét tứ giác PMQH có

K là trung điểm chung của PQ và MN

=>PMQH là hình bình hành

Hình bình hành PMQH có PQ\(\perp\)MH

nên PMQH là hình thoi

6 tháng 11 2018

A B C D E I

a) D là trung điểm AB, E là trung ddieermr AC

=> DE là đường trung bình của tam giác ABC

=> DE//=1/2BC

=> BDEC là hình thang 

b) Xét tứ giác AIBE có hai đường chéo AI và BE cắt nhau tại D 

Mà D là trung điểm của IE và D là trung điểm AB

=> AIBE là hình bình hành

c)Điều kiện: hình bình hành AIBE là hình chữ nhật : \(\widehat{BEA}=90^o\)

hay \(BE\perp AC\)=> BE là đường cao của tam giác ABC 

mà BE là trung tuyến của tam giác ABC vì E là trung điểm AC 

=> tam giác ABC cân tại B 

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

25 tháng 11 2019

d. Chứng minh đc ABDC là hình chữ nhật.

=> \(S_{ABDC}=AB.AC\)

Để \(S_{ABDC}=AB^2\)

khi đó AC = AB

=> Tam giác ABC có thêm điều kiện: cân tại A

25 tháng 11 2019

B A C D P N M

a) Xét tứ giác BMCP có : 

N là trung điểm của MP

N là trung điểm của BC

=> BMCP là hình bình hành ( dấu hiệu )

b) Xét tam giác ABC có :

M là trung điểm của AB

N là trung điểm của BC

=> Mn là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // AC hay MP // AC ; MN = 1/2 AC ( tính chất )

Vì MN = MP

=> MN + MP = 1/2 AC + 1/2 AC = AC = MP

Xét tứ giác AMPC có : AC // MP ; AC = MP

=> AMPC là hình bình hành ( dấu hiệu )

Hình bình hành AMPC có :  góc ABC = 90o

=> AMPC là hình chữ nhật ( dấu hiệu )

29 tháng 12 2023

Sửa đề: MN=MP

a: Xét tứ giác ANBP có

M là trung điểm chung của AB và NP

=>ANBP là hình bình hành

b: Ta có: ANBP là hình bình hành

=>AP//NB và AP=NB

Ta có: AP//NB

N\(\in\)BC

Do đó: AP//NC

Ta có: AP=NB

NB=NC

Do đó: AP=NC

Xét tứ giác APNC có

AP//NC

AP=NC

Do đó: APNC là hình bình hành

=>AC=NP

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Tia đối của MN có điểm P thì $NP>MN$ bạn nhé. Bạn xem lại đề.