K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:

OC = OA ( gt)

^BOC = ^DOA 

OB = OD

=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)

b) Có: OB = OD ; OA = OC ( gt)

=> OB - OA = OD - OC

=> AB = CD ( 2)

Từ (1)  => ^OBC = ^ODA  => ^ABK = ^CDK ( 3)

Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)

Từ (2) ; (3) ; (4) =>  \(\Delta\)AKB = \(\Delta\)CKD => AK = CK

Xét \(\Delta\)OAK và \(\Delta\)OCK có:

OA = OC 

^OAK = ^OCK 

AK = CK 

=>  \(\Delta\)OAK = \(\Delta\)OCK 

=> ^AOK = ^COK

=> OK là phân giác của ^xOy.

25 tháng 11 2019

Em cảm ơn cô nhìu ạ <3

8 tháng 12 2019

#Tự vẽ hình nhé bạn#k mình nha#Thanks#

a ) Xét \(\Delta\)ABC và \(\Delta\)DMC có :

  • AC = CD ( giả thiết )
  • BC = CM ( giả thiết )
  • Góc BCA = Góc MCD ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)DMC ( c - g - c )

b ) Ta có : \(\Delta\)ABC = \(\Delta\)DMC ( chứng minh trên )

\(\Rightarrow\)\(BÂC\) = Góc MDC ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong nên\(AB // MD\)

c ) Xét \(\Delta\)IAC và \(\Delta\) NDCcó :

  • Góc ICA = Góc NCD ( đối đỉnh )
  • AC = CD ( giả thiết )
  • BÂC = Góc CDN ( chứng minh trên )

\(\Rightarrow\)\(\Delta\)IAC = \(\Delta\)NDC ( g - c - g )

\(\Rightarrow\)IA = ND ( 2 cạnh tương ứng )

Ta có :  IB + AI = AB nên IB = AB - AI

Ta lại có : MN + ND = MD nên MN = MD - ND 

Mà AB = MD và AI = ND

\(\Rightarrow\)IB = MN

9 tháng 7 2015

a) Đầu tiên bạn xét tam giác OBD và tam giác OCA = nhau theo trường hợp c.g.c xog suy ra 2 cạnh tương ứng 

b) chứng minh AB=DC theo cách cộng đoạn thẳng 

    chứng minh góc BAE = góc EDC theo cách tổng 3 góc trong 1 tam giác (đầu tiên đưa ra  tam giác OBD và tam giác OCA = nhau theo chứng minh trên từ đó suy ra góc B= góc C, sau đó có góc AEB= góc DEC vì đối đỉnh, mà cộng tổng 3 góc trong 1 tam giác luôn =180 độ nên góc BAE = góc EDC)

từ đó xét tam giác ABE=tam giác DCE theo trường hợp g.c.g

 

2 tháng 7 2020

a) Xét hai tam giác vuông ABD và ACE có:

AB = AC (do ΔABCΔABC cân tại A)

AˆA^: góc chung

Vậy ΔABD=ΔACE(ch−gn)ΔABD=ΔACE(ch−gn)

b) ΔABCΔABC cân tại A

⇒⇒ AH là đường cao đồng thời là đường trung tuyến của BC

hay HB = HC

ΔBDCΔBDC có DH là đường trung tuyến ứng với cạnh huyền BC

⇒⇒ DH = HB = HC = BC2BC2

⇒⇒ ΔHDCΔHDC cân tại H.

c) ΔHDCΔHDC cân tại H có HM là đường cao đồng thời là đường trung tuyến

Vậy DM = MC (đpcm).

4 tháng 7 2020

 Đề sai => sửa :

Cho tam giác ABC cân tại A , góc A < 90 độ , đường cao BD và CE cắt nhau tại H ( D thuộc AC , E thuộc AB ) .

a) CM: Tam giác ABD = tam giác ACE 

b) CM : tam giác BHC cân .

c) So sánh HB = HD 

d)Trên tia đối của tia EH lấy điểm N sao cho NH < NC . Trên tia đối của tia DH lấy điểm M sao cho MH = NH . CM : BN , AH , CM đồng quy tại 1 điểm .

Giải :

a ,Vì EC là đường cao => \(EC\perp AB\Rightarrow\widehat{AEC}=\widehat{CEB}=90^0\)

    Vì BD là đường cao => \(BD\perp AC\Rightarrow\widehat{ADB}=\widehat{BDC}=90^0\)

Xét \(\Delta ACE\)và \(\Delta ABD\)có :

AB = AC ( \(\Delta ABC\)cân tại A )

\(\widehat{AEC}=\widehat{ADB}=90^0\)

\(\widehat{A}\)chung

=> \(\Delta ACE\)\(\Delta ABD\)( ch.gn )

=> \(\widehat{ABD}=\widehat{AEC}\)( 2 góc tương ứng )

b , Ta có : \(\widehat{ABC}=\widehat{ACB}\)\(\Delta ABC\)cân tại A )

Mà : \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)

        \(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)

        \(\widehat{ABD}=\widehat{AEC}\)(cmt)

=> \(\widehat{DBC}=\widehat{ECB}\)

=> \(\Delta HBC\)cân tại H .

c , Xét \(\Delta DHC\)có \(\widehat{ADB}=90^0\)

=> HC là cạnh huyền ( cạnh lớn nhất )

=> HC > DH 

Mà DB = DC (\(\Delta HBC\) cân tại H )

=> HB > HD

d , mik cx 0 bt :>

 Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên...
Đọc tiếp

 

Bài 1 . Cho tam giác ABC vuông tại A. Trên cạnh AC lấy các điểm M, N (M nằm giữa A, N). So sánh các độ dài BM, BN, BC.

Bài 2    Cho tam giác ABC, điểm M nằm giữa B và C. Gọi H và K là chân các đường vuông góc kẻ từ M đến các đường thẳng AB và AC. So sánh BC và tổng MH + MK.

Bài 3    Cho tam giác ABC có BC = 1 cm, AC = 7 cm. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên (cm).

          Bài 4    tam giác ABC, điểm M thuộc cạnh AB.

a) So sánh MC với AM + AC.

b) Chứng minh MB + MC < AB + AC.

- Cộng cùng một số vào hai vế của bất đẳng thức:

a< b => a + c < b + c.

- Cộng từng vế hai bất đẳng thức cùng chiều:

 

          Bài 5      Cho tam giác ABC, điểm M bất kỳ nằm trong tam giác.

a) So sánh MB + MC với BC

b) Chứng minh MA + MB + MC >

Bài 6    Cho ABC có hai đường trung tuyến BD, CE

a) Tính các tỉ số

Bài 7    Cho tam giác ABC có hai đường trung tuyến BP, CQ cắt nhau tại G. Trên tia đối của tia PB lấy điểm E sao cho PE = PG. Trên tia đối của tia QG lấy điểm F sao cho QF = QG. Chứng minh:

 a) GB = GE, GC = GE;            b) EF = BC và EF//BC.

b) Chứng minh BD + CE > BC

Bài 8  Cho ABC. Trên tia đối của tia AB lấy điểm D sao cho

AD = AB. Lấy G thuộc cạnh AC sao cho AG =  AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.

Chứng minh:

a) G là trọng tâm BCD;

b) BED = FDE, từ đó suy ra EC = DF;

c) DMF = CME;

d) B, G, M thẳng hàng.

Bài 9. Cho ABC vuông tại A, AB = 6 cm, AC = 8 cm.

a) Tính BC.

b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh .

c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh BCE vuông.

Bài 10  Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:

a) Chứng minh AB //HK;

b) Chứng minh

c) Chứng minh AKI cân,

Bài 11 Cho có tia phân giác Ot. Trên tia Ot lấy điểm C bất kì. Lấy

A Ox, B Oy sao cho OA = OB. Gọi H là giao điểm của AB và Ot. Chứng minh:

a) CA =  CB và CO là phân giác của ;

b) OC vuông góc với AB tại trung điểm của AB;

c) Biết AB = 6 cm, OA = 5 cm. Tính OH

0
2 tháng 1 2021

a, xét \(\Delta AMBva\Delta AMC\)

AB=AC

AM cạnh chung

MB=MC

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b, xét \(\Delta AMBva\Delta CMD\)

AM=MD

\(\widehat{AMB}=\widehat{CMD}\)

MB=MC

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)

mà 2 góc này ở vị chí so le trong 

\(\Rightarrow AB//CD\)

c, theo bài: tia MD là tia dối của tia MA 

\(\Rightarrow\widehat{AMD}=180^0\)

 \(\widehat{KMD}=\widehat{IMA}\)( 2 góc đối đỉnh)

ta có: \(\widehat{AMD}=\widehat{AMK}+\widehat{KMD}\)

hay\(\widehat{AMD}=\widehat{AMK}+\widehat{AMI}=180^0\)

\(\Rightarrow\widehat{IMK}=180^0\)

\(\Rightarrow\)I,M,K thẳng hàng

2 tháng 1 2021

cho mik nha

14 tháng 6 2020

Đề bài sai