K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

  a. xét tam giác NIP vuônh tại I suy ra IP=căn của(15^2-12^2)=9 
b. xét tam giác QNP có NI vuông góc với QP 
mà 12^2=16*9 suy ra NI^2=QI*IP suy ra tam giác QNP vuông tại N suy ra QN vuông góc với NP 
( dùng đảo của hệ thức lượng) bạn có thể dùng đảo pitago bằng cách tính NQ 
c.từ M hạ đường cao MF 
tính tương tự câu a ta được QF=9 
suy ra FI=16-9=7 
MN // FI ( MNPQ là hình thang cân) và MF//NI( cùng vuông góc với QP) suy ra MNIF là hình bình hành 
suy ra MN=FI=7 
suy ra Smnpq=(MN+PQ)*NP/2=240 
d. theo chứng minh câu b suy ra tam giác NPQ vuông tại N mà E là trung điểm của QP suy ra EQ=EN suy ra tam giác EQN cân tại E suy ra góc NQE = góc ENQ 
mà ENQ= góc PNK ( cùng phụ góc ENP) suy ra góc NQE= góc ENQ 
xét tam giác QNK và tam giác NPK có 
góc NKP chung 
gcs NQE= góc ENQ 
suy ra 2 tam giác đồng dạng 
suy ra KN/KP=KQ/KN 
suy ra KN^2=KP.KQ

k cho minh nnha

7 tháng 6 2020

😡😡😡😡😡😡

30 tháng 11 2015

Xét tam giác KAD và HDB có:

DA=DB

^B=^ADK(đồng vị)

^DAK=^BDH(đvị)

=>∆KAD=∆HDB(g.c.g)

=>KA=DH

Mà KA//DH(gt)

=>ADHK là hbh (3)

Xét ∆HAB có:

DA=DB(cmt )=> DH là đường trung tuyến

^AHB=90(gt)

=>DH=1/2AB =>DA=DA (4)

Từ (3) và (4) =>ADHK là hình thoi

29 tháng 11 2015

a) xét tứ giác ADME có

^A=^ADM=^AEM=90 (gt)

=>ADME là hcn

b)Xét tam giác ABC có:

MB=MC(gt)

ME//AB(ADME là hcn.cmt)

=>EA=EC=>EC=1/2AC  (1)

Lại có: MD//AC (ADME là hcn.cmt)

=>DA=DB

=>DM là đường trung bình=>DM=1/2AC  (2)

Từ (1) và (2)=>DM=EC

mà DM//AE(E thuộc AC)

=>MDEC là hbh

c) Nối H với E

Xét tam giác HAC có:

EA=EC(cmt)=>HE là đường trung tuyến

^AHC=90(gt)

=>HE=1/2AC

mà DM=1/2AC(cmt)

=>HE=DM

=>MHDE là htc.

 

 

 

16 tháng 12 2016

A B C M D E H K

11 tháng 2 2017

mk ko biết

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK