Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(\widehat{BAH}< \widehat{CAH}\)
nên \(\widehat{C}< \widehat{B}\)
=>AB<AC
Xet ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
Bài 1:
Xét ΔABC có \(\widehat{C}>\widehat{B}\)
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
Bài 1:
\(\widehat{C}>\widehat{B}\) nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
N M K I A B
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp
M N D A B I
hình của mjnh thiếu điểm H và K rồi bạn tự thêm vào đi
a, tam giác MND cân tại M (gt)
=> ^MND = ^MDN (tc)
^MND + ^MNB = 180 (kb)
^MDN + ^MDA = 180 (kb)
=> ^MNB = ^MDA
xét tam giác MNB và tam giác MDA có BN = DA (gt)
MN = MD do tam giác MND cân tại M (gt)
=> tg MNB = tg MDA (c-g-c)
=> MA = MB (đn)
=> tg MAB cân tại M (Đn)
b, xét tam giác DHA và tam giác NKB có : AD = BN (gt)
^AHD = ^BKN = 90
^A = ^B do tam giác MAB cân tại M (câu a)
=> tg DHA = tg NKB (ch-gn)
=> DH = KN (đn)
c, tg DHA = tg NKB (câu b)
=> AH = KB (đn)
có MA = MB (câu a)
AH + MH = AM
MK + KB = BM
=> MH = MK
d, có ^HDA = ^KNB do tg DHA = tg NKB (Câu b)
^HDA = ^NDI (đối đỉnh)
^KNB = ^DNI (đối đỉnh)
=> ^NDI = ^DNI
=> tam giác DNI cân tại I
a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a) áp dụng định lí py-ta-go, ta có:
\(NK^2=MK^2+MN^2=12^2+9^2=144+81=225\)
\(NK=\sqrt{225}=25\left(cm\right)\)
b)xét tam giác NMK và NIK có:
IM=MN(gt)
MK(chung)
NMK=IMK=90
suy ra tam giác NMK=NIK(c.g.c)
suy ra KN=KI suy ra tam giác KIN cân tại K
c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI
xét 2 tam giác vuông NAM và IBM có:
NM=MI(gt)
KIN=KIN( tam giác NIK cân tại K)
suy ra tam giác NAM=IBM(CH-GN) suy ra MA=MI
xét 2 tam giác vuông KAM và KBM có:
KM(chung)
MA=MB(cmt)
suy ra tam giác MAK=MBK(CH-CGV)
a) áp dụng định lí py-ta-go, ta có:
NK^2=MK^2+MN^2=12^2+9^2=144+81=225
NK=√225=25(cm)
b)xét tam giác NMK và NIK có:
IM=MN(gt)
MK(chung)
NMK=IMK=90
suy ra tam giác NMK=NIK(c.g.c)
suy ra KN=KI suy ra tam giác KIN cân tại K
c) theo câu a, ta có tam giác NIK cân tại K suy ra KIN=KNI
xét 2 tam giác vuông NAM và IBM có:
NM=MI(gt)
KIN=KIN( tam giác NIK cân tại K)
suy ra tam giác NMA=IMB(CH-GN) suy ra MA=MI
xét 2 tam giác vuông KAM và KBM có:
KM(chung)
MA=MB(cmt)
suy ra tam giác MAK=MBK(CH-CGV)
Góc b<góc c. =)AB<AC
=) HB<HC
a) Xét tam giác MNE có MH là đường cao đồng thời trung tuyến nên MNE là tam giác cân tại M.
Vậy nên MN = ME.
b) Tam giác MNP cân tại N có NA là đường cao nên NA cũng là trung tuyến. Vậy thì MA = AP.