Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Xét ΔADE có AD=AE
nên ΔADE cân tại A
b: Xét ΔABC có
D là trung điểm của AB
DF//AC
Do đó: F là trung điểm của BC
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình
=>DF=AE
mà AE=AD
nên DF=AD
=>ΔADF cân tại D
c: Xét tứ giác ADFE có
DF//AE
DF=AE
Do đó: ADFE là hình bình hành
mà AD=AE
nên ADFE là hình thoi
=>AF⊥DE

Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau

a )
ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh )
mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A )
Do do : \(\widehat{C_2}=\widehat{B}\)
xét \(\Delta ABDva\Delta ICE,co:\)
AB = AC = IC ( gt )
BD=CE ( gt )
\(\widehat{C_2}=\widehat{B}\) (cmt )
Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AB=AD
AH chung
Do đó: ΔAHB=ΔAHD
b: ΔAHB=ΔAHD
=>\(\widehat{HAB}=\widehat{HAD}\)
Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1),(2) suy ra AE là đường trung trực của BD
c: Xét ΔABC có AE là phân giác
nên \(\dfrac{EB}{AB}=\dfrac{EC}{AC}\)
mà AB<AC
nên EB<EC
d: Ta có: \(\widehat{ABE}+\widehat{EBF}=180^0\)(hai góc kề bù)
\(\widehat{ADE}+\widehat{CDE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
nên \(\widehat{EBF}=\widehat{EDC}\)
Xét ΔEBF và ΔEDC có
EB=ED
\(\widehat{EBF}=\widehat{EDC}\)
BF=DC
Do đó: ΔEBF=ΔEDC
=>\(\widehat{BEF}=\widehat{DEC}\)
=>\(\widehat{BEF}+\widehat{BED}=180^0\)
=>F,E,D thẳng hàng