\(\frac{AM...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )

1) Do BN = 1/4 BC  =>  SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB  =>  MB = 3/4 AB  =>  SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC

2) Do AM = 1/4 AB  =>  SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA  =>  PA = 3/4 CA  =>  SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC

3) Do CP = 1/4 CA  =>  SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC  =>  NC = 3/4 BC  =>  SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC

Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC

29 tháng 7 2016

bạn có thể giúp mình tất cả các bài còn lại đc ko

27 tháng 1 2019

A B C O D I H E F K G T G 0 L

a) Ta thấy: \(\Delta\)ABC nhận H làm trực tâm nên ^BHC + ^BAC = 1800 (1)

Ta có: ^FKE = ^BKC = 1800 - ^KBC - ^KCB = 1800 - ^EAD - ^FAD = 1800 - ^EAF => ^BKC + ^BAC = 1800 (2)

Từ (1) và (2) suy ra: ^BHC = ^BKC => Tứ giác BHKC nội tiếp => ^KHC = ^KBC = ^CAD

Mà AD đi qua tâm ngoại tiếp (O) của \(\Delta\)ABC, AH vuông góc BC nên dễ thấy ^CAD = ^BAH

Từ đó: ^KHC = ^BAH = ^BCH => HK // BC (2 góc so le trong bằng nhau) (đpcm).

b) Qua B kẻ đường thẳng song song với CK cắt (O) tại điểm thứ hai G.

Xét (O): ^BGC + ^BAC = 1800. Mà ^BKC + ^BAC =1800 (cmt) nên ^BGC = ^BKC

=> ^KBC = ^GCB => BK // CG => Tứ giác BKCG là hình bình hành => S = SBGC

Hạ GT vuông góc BC thì S = SBGC = GT.BC/2 < G0L.BC/2 (Với G0 là điểm chính giữa cung BC không chứa A)

Lại có: ^LBG0 = 1/2.Sđ(BC = ^BAC/2 => G0L = BL.tan^BAC/2 hay G0L = BC/2 . tan^BAC/2

Suy ra: S < BC/2 . tan^BAC/2 . BC/2 = (BC/2)2.tan^BAC/2 (đpcm).

c) +) Chứng minh BF.BA - CE.CA = BD2 - CD2 ?

Theo tính chất góc nội tiếp: ^KED = ^BED = ^BAD = ^DAF = ^DCF = ^DCK => Tứ giác DKEC nội tiếp

Tương tự: Tứ giác DKFB nội tiếp. Áp dụng phương tích đường tròn:

BF.BA - CE.CA = BD.BC - CD.CB = BC(BD-CD) = (BD+CD)(BD-CD) = BD2 - CD2 (đpcm).

+) Chứng minh: DI vuông góc với BC ?

Từ câu a ta có: ^EKF + ^EAF = 1800 => Tú giác AEKF nội tiếp => K nằm trên (AEF)

Nối I với E và F thì có: ^IFK + ^IEK = ^IKF + ^IKE = ^EKF = ^BKC

=> ^IFK + ^IEK + ^KBC + ^KCB = ^IFK + ^IEK + ^KFD + ^KED = ^IFD + ^IED = 1800 (Do DKEC;DKFB nội tiếp)

Suy ra: Tứ giác DEIF nội tiếp => ^IDF = ^IEF = ^IFE = ^IDE. Kết hợp với ^BDF = ^CDE (=^BAC)

Dẫn đến ^IDF + ^BDF = ^IDE + ^CDE => ^IDB = ^IDC => ID vuông góc BC (2 góc kề bù bằng nhau) (đpcm).

6 tháng 3 2020

i love you

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

5 tháng 9 2017

A B C M N D K I L

Ta có Tam giác ABN= BCK= CAN

=> góc KBC=ẠCN

=> góc DLI = Góc LBC+ LCB=LCB+ACN=60

CMTT: AIL=IDL=60

=> tam giác DIL đều

ÁP dụng định lí Mêlelauyt tam giác BIL có cát tuyến AKC

\(\frac{AI}{AN}.\frac{CN}{CB}.\frac{KB}{KI}=1\)=>\(\frac{AI}{KI}=\frac{3}{2}=\frac{BL}{IK}\)=>BI=IL

=> BI=IL=DI

=> tam giác BDL vuông

(Hơi tắt-chắc sai)

5 tháng 9 2017

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a)      Chứng minh tứ giác BCEF nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.

b)      Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T) chứng minh: MK.MT = ME.MF

c)       Chứng minh tứ giác IDKT là tứ giác nội tiếp

d)      Đường thẳng vuông góc với IH cắt đường thẳng AB, AC và AD lần lượt tại N, S và P. Chứng minh: P là trung điểm của đoạn thẳng NS.