Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ phân giác BD, ta có: \(\frac{DA}{DC}=\frac{BA}{BC}\)
\(\Rightarrow\frac{DA}{AB}=\frac{DC}{BC}=\frac{DA+DC}{AB+BC}=\frac{AC}{AB+BC}\left(1\right)\)
Mặt khác \(\Delta ABD\)vuông tại A, ta có:
\(\tan\widehat{ABD}=\tan\frac{\widehat{ABC}}{2}=\frac{DA}{AB}\left(2\right)\)
Từ (1) và (2) =>đpcm
Lớp 9 không biết có học tới sin cos âm chưa nếu chưa thì lấy phần dương nha
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{2}{3}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{4}{9}=\frac{1}{cos^2a}\)
\(\frac{13}{9}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{9}{13}\)
\(cosa=\pm\sqrt{\frac{9}{13}}=\pm\frac{3\sqrt{13}}{13}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{9}{13}=1\)
\(sin^2a=\frac{4}{13}\)
\(sina=\pm\sqrt{\frac{4}{13}}=\pm\frac{2\sqrt{13}}{13}\)
tan dương nên sẽ có 2 TH
TH1 sin và cos cùng dương
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{2\sqrt{13}}{13}\right)^3+3\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)
TH2 sin và cos cùng âm
\(\frac{sin^3a+3cos^3a}{27sin^3a-25cos^3a}\)
\(=\frac{\left(\frac{-2\sqrt{13}}{13}\right)^3+\left(\frac{-3\sqrt{13}}{13}\right)^3}{27\cdot\left(\frac{-2\sqrt{13}}{13}\right)^3-25\cdot\left(\frac{-3\sqrt{13}}{13}\right)^3}\)
\(=-\frac{89}{459}\)
tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'<
Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)
\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)
Tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé
Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)
\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)
Tương tự cộng lại ra đpcm
Câu c)
Ta có: AD là phân giác ^BAC
=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o
Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o
=> ^ABI = 45o
Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân
có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM
=> BM = 2 BI
Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB2 = BI.BM = BI.2BI = 2BI2
Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB2 = BH.BC
=> BH.BC = 2BI2
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên