Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ABC có :
BD vuông góc với AC
CE vuông góc với AB
=> H là trực tâm ∆ABC(1)
M là trung điểm là BC
=> AM là trung tuyến ∆ABC(2)
=> AM vuông góc với BC
b) Vì AM là trung trực ∆ABC
Vì AM là trung tuyến ∆ABC
=> ∆ABC cân tại A
=> BM = MC
=> AD = DC
=> AE = EB
Xét ∆ vuông BMH và ∆ vuông CMH ta có :
HM chung
BM = MC
=> ∆BMH = ∆CMH ( 2 cạnh góc vuông)
=> BH = HC
Chứng minh tương tự ta có :
=> AH = HB
=> AH = HC
=> HC = AH
Xét ∆ vuông AEH và ∆ vuông HMC ta có :
AH = HC (cmt)
EHA = MHC ( đối đỉnh)
=> ∆AEH = ∆ HMC(cạnh huyền - góc nhọn)
=> AE = MC ( 2 cạnh tg ứng)
Mà AE = EB
=> MC = EB
Mà BM = MC (cmt)
=> BE = BM
=> ∆EBM cân tại E(dpcm)
Khó thật
a) Có góc A chung và 2 góc vuông => ĐPCM
b) Xét EHB và DHC có:
2 góc vuông và 2 góc đối đỉnh EHB và DHC
=> EHB đồng dạng với DHC
=>BH/CH=EH/DH
=>BH.DH=EH.CH
c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE
và có góc A chung .
Từ đó suy ra: ADE đồng dạng với ABC
=> góc ADE= góc ABC
d) Ta có IO là đường trung bình ( tự chứng minh )
=> IO//AH => AHM đồng dạng với IOM
Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )
Tỉ số diện tích của AHM so với IOM là 22=4
Vậy SAHM=4.SIOM
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD