K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

Sai thì thôi nha! Em chịu hình:(

A B C D E H E M K I

a) H là giao điểm của hai đường cao BD và CE nên đường cao còn lại đi qua H. Hay AH vuông góc với BC.

b + c) đang suy nghĩ

29 tháng 8 2019

Tham khảo:

a) HKHK là đường trung tuyến trong ADH△ADH vuông nên HK=AD2HK=AD2

Tương tự, FK=AD2=HKFK=AD2=HK. Suy ra KFH△KFH cân tại KK

Ta có ˆAKF=1802ˆKAFAKF^=180∘−2KAF^ do AKF△AKF cân tại KK. Tương tự, ˆHKD=1802ˆKDHHKD^=180∘−2KDH^

Suy raˆAKF+ˆHKD=1802ˆKAF+1802ˆKDH=3602(ˆKAF+ˆKDH)=3602(180ˆACD)=3602(18060)=120AKF^+HKD^=180∘−2KAF^+180∘−2KDH^=360∘−2(KAF^+KDH^)=360∘−2(180∘−ACD^)=360∘−2(180∘−60∘)=120∘

ˆFKH=180ˆAKFˆHKD=60FKH^=180∘−AKF^−HKD^=60∘

Vậy KFH△KFH đều

b) Chứng minh như câu a, ta được KEH△KEH đều, suy ra KEHFKEHF là hình thoi. Như vậy thì 2 đường chéo vuông góc, hay KHEF

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)

20 tháng 1 2018

a=0

nha các bạn

20 tháng 1 2018

hình mà = 0 à, óc tró

a)  Xét ∆ABC có :

BD vuông góc với AC

CE vuông góc với AB 

=> H là trực tâm ∆ABC(1)

M là trung điểm là BC 

=> AM là trung tuyến ∆ABC(2)

=> AM vuông góc với BC

b) Vì AM là trung trực ∆ABC 

Vì AM là trung tuyến ∆ABC 

=> ∆ABC cân tại A

=> BM = MC

=> AD = DC

=> AE = EB

Xét ∆ vuông BMH và ∆ vuông CMH ta có :

HM chung

BM = MC 

=> ∆BMH = ∆CMH ( 2 cạnh góc vuông) 

=> BH = HC

Chứng minh tương tự ta có : 

=> AH = HB 

=> AH = HC 

=> HC = AH 

Xét ∆ vuông AEH và ∆ vuông HMC ta có : 

AH = HC (cmt)

EHA = MHC ( đối đỉnh) 

=> ∆AEH = ∆ HMC(cạnh huyền - góc nhọn)

=> AE = MC ( 2 cạnh tg ứng) 

Mà AE = EB 

=> MC = EB 

Mà BM = MC (cmt)

=> BE = BM 

=> ∆EBM cân tại E(dpcm)

Khó thật