Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác BMH và CMK có
+ BM = CM ( GT)
+ BMH=CMK (Hai góc đối đỉnh)
+ MH = MK (GT)
,Do đó tam giác BMH= tam giác CMK (Đpcm)
b,Vì tam giác BMH=tam giác CMK ( chứng minh trên)
nên MBH=MCK (Hai góc tương ứng)
mà 2 góc MBH và MCK ở vị trí so le trong nên BH //CK
lại có BH vuông góc AC (GT)
nên CA vuông góc CK (đpcm)
* Chứng minh được CH = CG
* Chứng minh được CH = BK
Suy ra đpcm
Hình ảnh bạn tự vẽ nhé!
a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:
ID = IH ( vì I là trung điểm của HD)
IA là cạnh chung
=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)
b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)
\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)
BA là cạnh chung.
=> Tam giác ADB = tam giác AHB ( c.g.c)
=> D = H = 90 độ
=> AD\(\perp\)BD tại D
mk cần phần c)