K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

-Sửa đề: Đoạn BC không đổi.

-BH cắt AC tại D.

-Xét △ABC có:

H là trực tâm, AK là đường cao.

\(\Rightarrow\)H∈AK, BH là đường cao.

Mà BH cắt AC tại D (gt)

\(\Rightarrow\)BH⊥AC tại D.

-Xét △HBK và △HAD có:

\(\widehat{BKH}=\widehat{HDA}=90^0\)

\(\widehat{BHK}=\widehat{AHD}\) (đối đỉnh)

\(\Rightarrow\)△HBK∼△HAD (g-g).

-Xét △HBK và △CAK có:

\(\widehat{HKB}=\widehat{CKA}=90^0\)

\(\widehat{HBK}=\widehat{KAC}\)(△HBK∼△HAD)

\(\Rightarrow\)△HBK∼△CAK (g-g).

\(\Rightarrow\dfrac{KH}{KC}=\dfrac{KB}{KA}\) (tỉ số đồng dạng)

\(\Rightarrow KH.KA=KB.KC\)

-Gọi M là trung điểm BC \(\Rightarrow MB=MC=\dfrac{BC}{2}\)

\(KH.KA\le\dfrac{BC^2}{4}\)

\(\Leftrightarrow KB.KC\le\left(\dfrac{BC}{2}\right)^2\)

\(\Leftrightarrow\left(MB-MK\right)\left(MC+MK\right)\le MB^2\) (do cách dựng hình)

\(\Leftrightarrow\left(MB-MK\right)\left(MB+MK\right)\le MB^2\)

\(\Leftrightarrow MB^2-MK^2\le MB^2\) (luôn đúng do MK>0)

-Vậy \(KH.KA\le\dfrac{BC^2}{4}\) . Dấu bằng xảy ra khi △ABC cân tại A.

 

28 tháng 2 2018

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.

12 tháng 8 2016

A B C M H I K N a) Ta có : góc HCB = góc BAH (1) vì cùng phụ với góc ABH

Dễ thấy góc HMB = góc IHN (cùng phụ với góc MHN)

Mà góc AHB + góc BHI = góc HMC + góc HMB = 1800

=> góc HMC = góc AHI (2)

Từ (1) và (2) suy ra đpcm

 

19 tháng 4 2020

bạn làm câu b nữa đc ko